Nuprl Lemma : bag-member-size

[T:Type]. ∀[bs:bag(T)]. ∀[x:T].  0 < #(bs) supposing x ↓∈ bs


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-size: #(bs) bag: bag(T) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q exists: x:A. B[x] prop: squash: T subtype_rel: A ⊆B nat:
Lemmas referenced :  bag_wf nat_wf bag-size_wf member-less_than bag-member_wf bag-size-bag-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_functionElimination dependent_pairFormation sqequalRule imageMemberEquality baseClosed isect_memberEquality natural_numberEquality applyEquality lambdaEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    0  <  \#(bs)  supposing  x  \mdownarrow{}\mmember{}  bs



Date html generated: 2016_05_15-PM-02_40_30
Last ObjectModification: 2016_01_16-AM-08_47_22

Theory : bags


Home Index