Nuprl Lemma : bag-member-size
∀[T:Type]. ∀[bs:bag(T)]. ∀[x:T].  0 < #(bs) supposing x ↓∈ bs
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
bag_wf, 
nat_wf, 
bag-size_wf, 
member-less_than, 
bag-member_wf, 
bag-size-bag-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    0  <  \#(bs)  supposing  x  \mdownarrow{}\mmember{}  bs
Date html generated:
2016_05_15-PM-02_40_30
Last ObjectModification:
2016_01_16-AM-08_47_22
Theory : bags
Home
Index