Step
*
4
of Lemma
State-comb-fun-eq
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. ¬↑first(e)
10. ¬↑e ∈b X
11. ∀l:Id. (1 ≤ #(init l))
12. ∀l:Id. single-valued-bag(init l;B)
13. single-valued-classrel(es;X;A)
⊢ State-comb(init;f;X)(e) = State-comb(init;f;X)(pred(e)) ∈ B
BY
{ (RepUR ``State-comb classfun rec-combined-class-opt-1`` 0⋅
   THEN RW (AddrC [2;1;1;1] (RecUnfoldTopC `rec-comb`)) 0
   THEN Reduce 0
   THEN AutoSplit) }
1
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. ¬↑first(e)
10. ¬↑e ∈b X
11. ∀l:Id. (1 ≤ #(init l))
12. ∀l:Id. single-valued-bag(init l;B)
13. single-valued-classrel(es;X;A)
14. (X es e) = {} ∈ bag(A)
⊢ sv-bag-only(Prior(rec-comb(λn.[X][n];λi,w,s. if bag-null(w 0) then s else lifting-2(f) (w 0) s fi init))?init es e)
= sv-bag-only(rec-comb(λn.[X][n];λi,w,s. if bag-null(w 0) then s else lifting-2(f) (w 0) s fi init) es pred(e))
∈ B
2
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E
9. ¬((X es e) = {} ∈ bag(A))
10. ¬↑first(e)
11. ¬↑e ∈b X
12. ∀l:Id. (1 ≤ #(init l))
13. ∀l:Id. single-valued-bag(init l;B)
14. single-valued-classrel(es;X;A)
⊢ sv-bag-only(lifting-2(f) (X es e) 
              (Prior(rec-comb(λn.[X][n];λi,w,s. if bag-null(w 0) then s else lifting-2(f) (w 0) s fi init))?init es e))
= sv-bag-only(rec-comb(λn.[X][n];λi,w,s. if bag-null(w 0) then s else lifting-2(f) (w 0) s fi init) es pred(e))
∈ B
Latex:
Latex:
1.  Info  :  Type
2.  B  :  Type
3.  A  :  Type
4.  f  :  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B
5.  init  :  Id  {}\mrightarrow{}  bag(B)
6.  X  :  EClass(A)
7.  es  :  EO+(Info)
8.  e  :  E
9.  \mneg{}\muparrow{}first(e)
10.  \mneg{}\muparrow{}e  \mmember{}\msubb{}  X
11.  \mforall{}l:Id.  (1  \mleq{}  \#(init  l))
12.  \mforall{}l:Id.  single-valued-bag(init  l;B)
13.  single-valued-classrel(es;X;A)
\mvdash{}  State-comb(init;f;X)(e)  =  State-comb(init;f;X)(pred(e))
By
Latex:
(RepUR  ``State-comb  classfun  rec-combined-class-opt-1``  0\mcdot{}
  THEN  RW  (AddrC  [2;1;1;1]  (RecUnfoldTopC  `rec-comb`))  0
  THEN  Reduce  0
  THEN  AutoSplit)
Home
Index