Step
*
2
2
2
of Lemma
State-loc-comb-classrel-non-loc
1. Info : Type
2. B : Type
3. A : Type
4. f : Id ─→ A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-loc-comb(init;f;X)(e')
⇐⇒ v ∈ State-comb(init;f loc(e');X)(e'))))
10. v : B@i
11. ¬((X es e) = {} ∈ bag(A))
12. a : A
13. b : B
14. a ∈ X(e)
15. ∀e':E
((e' <loc e)
⇒ (∀w:B. (¬w ∈ λx,s. if bag-null(x) then s else lifting-2(f loc(e)) x s fi |X,Prior(self)?init|(e'))\000C))
16. b ↓∈ init loc(e)
17. v = (f loc(e) a b) ∈ B
18. ¬((X es e) = {} ∈ bag(A))
⊢ ↓(∃e':E
((es-p-local-pred(es;λe'.(↓∃w:B
w ∈ λl,x,s. if bag-null(x) then s else lifting-loc-2(f) l x s fi |Loc, X, Prior(self)?i\000Cnit|(
e')))
e
e')
∧ b ∈ λl,x,s. if bag-null(x) then s else lifting-loc-2(f) l x s fi |Loc, X, Prior(self)?init|(e')))
∨ ((∀e':E
((e' <loc e)
⇒ (∀w:B. (¬w ∈ λl,x,s. if bag-null(x) then s else lifting-loc-2(f) l x s fi |Loc, X, Prior(self)?init|(e')))))
∧ b ↓∈ init loc(e))
BY
{ (D 0
THEN OrRight
THEN Auto
THEN (InstHyp [⌈e'⌉;⌈w⌉] (-7)⋅ THENA Auto)
THEN ParallelLast
THEN (InstHyp [⌈e'⌉;⌈w⌉] (-14)⋅ THENA Auto)
THEN RepUR ``State-loc-comb State-comb`` (-1)
THEN Subst ⌈loc(e) = loc(e') ∈ Id⌉ 0⋅
THEN MaAuto) }
Latex:
Latex:
1. Info : Type
2. B : Type
3. A : Type
4. f : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. \mforall{}e':E
((e' < e)
{}\mRightarrow{} (\mforall{}v:B. (v \mmember{} State-loc-comb(init;f;X)(e') \mLeftarrow{}{}\mRightarrow{} v \mmember{} State-comb(init;f loc(e');X)(e'))))
10. v : B@i
11. \mneg{}((X es e) = \{\})
12. a : A
13. b : B
14. a \mmember{} X(e)
15. \mforall{}e':E
((e' <loc e)
{}\mRightarrow{} (\mforall{}w:B
(\mneg{}w \mmember{} \mlambda{}x,s. if bag-null(x) then s else lifting-2(f loc(e)) x s fi |X,Prior(self)?init|(
e'))))
16. b \mdownarrow{}\mmember{} init loc(e)
17. v = (f loc(e) a b)
18. \mneg{}((X es e) = \{\})
\mvdash{} \mdownarrow{}(\mexists{}e':E
((es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:B
w \mmember{}
\mlambda{}l,x,s. if bag-null(x)
then s
else lifting-loc-2(f) l x s
fi |Loc, X, Prior(self)?init|(e')))
e
e')
\mwedge{} b \mmember{} \mlambda{}l,x,s. if bag-null(x) then s else lifting-loc-2(f) l x s fi |Loc, X, Prior(self)?init|(e\000C')))
\mvee{} ((\mforall{}e':E
((e' <loc e)
{}\mRightarrow{} (\mforall{}w:B
(\mneg{}w \mmember{}
\mlambda{}l,x,s. if bag-null(x) then s else lifting-loc-2(f) l x s fi |Loc, X, Prior(self)?\000Cinit|(
e')))))
\mwedge{} b \mdownarrow{}\mmember{} init loc(e))
By
Latex:
(D 0
THEN OrRight
THEN Auto
THEN (InstHyp [\mkleeneopen{}e'\mkleeneclose{};\mkleeneopen{}w\mkleeneclose{}] (-7)\mcdot{} THENA Auto)
THEN ParallelLast
THEN (InstHyp [\mkleeneopen{}e'\mkleeneclose{};\mkleeneopen{}w\mkleeneclose{}] (-14)\mcdot{} THENA Auto)
THEN RepUR ``State-loc-comb State-comb`` (-1)
THEN Subst \mkleeneopen{}loc(e) = loc(e')\mkleeneclose{} 0\mcdot{}
THEN MaAuto)
Home
Index