Nuprl Lemma : State-loc-comb-classrel-non-loc

[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)].
  ∀X:EClass(A). ∀es:EO+(Info). ∀e:E.  ∀[v:B]. (v ∈ State-loc-comb(init;f;X)(e) ⇐⇒ v ∈ State-comb(init;f loc(e);X)(e))


Proof




Definitions occuring in Statement :  State-loc-comb: State-loc-comb(init;f;X) State-comb: State-comb(init;f;X) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf classrel_wf State-loc-comb_wf State-comb_wf es-loc_wf nat_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt es-causl_wf zero-le-nat le_wf add-mul-special zero-mul event-ordering+_subtype es-E_wf event-ordering+_wf eclass_wf Id_wf bag_wf rec-combined-loc-class-opt-1-classrel bag-null_wf rec-combined-class-opt-1-classrel bool_wf equal-wf-T-base assert_wf bnot_wf not_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert assert-bag-null eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity primed-class-opt-classrel rec-combined-loc-class-opt-1_wf equal_wf bool_cases_sqequal assert-bnot lifting-loc-2_wf rec-combined-class-opt-1_wf lifting-2_wf es-p-local-pred_wf squash_wf exists_wf all_wf es-locl_wf bag-member_wf es-causl_weakening bag-combine_wf single-bag_wf bag-member-combine primed-class-opt_wf sq_stable__bag-member sq_stable__classrel bag-member-lifting-2 bag-member-lifting-loc-2

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    \mforall{}X:EClass(A).  \mforall{}es:EO+(Info).  \mforall{}e:E.
        \mforall{}[v:B].  (v  \mmember{}  State-loc-comb(init;f;X)(e)  \mLeftarrow{}{}\mRightarrow{}  v  \mmember{}  State-comb(init;f  loc(e);X)(e))



Date html generated: 2015_07_22-PM-00_23_14
Last ObjectModification: 2015_01_28-AM-10_15_35

Home Index