Nuprl Lemma : pi-comm-decompose
∀[P:pi_term()]. P = picomm(picomm-pre(P);picomm-body(P)) ∈ pi_term() supposing ↑picomm?(P)
Proof
Definitions occuring in Statement : 
picomm-body: picomm-body(v)
, 
picomm-pre: picomm-pre(v)
, 
picomm?: picomm?(v)
, 
picomm: picomm(pre;body)
, 
pi_term: pi_term()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Lemmas : 
pi_term-induction, 
isect_wf, 
assert_wf, 
picomm?_wf, 
equal_wf, 
pi_term_wf, 
picomm_wf, 
picomm-pre_wf, 
picomm-body_wf, 
assert_elim, 
pizero_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
pioption_wf, 
pipar_wf, 
pirep_wf, 
pinew_wf, 
name_wf
Latex:
\mforall{}[P:pi\_term()].  P  =  picomm(picomm-pre(P);picomm-body(P))  supposing  \muparrow{}picomm?(P)
Date html generated:
2015_07_23-AM-11_32_54
Last ObjectModification:
2015_01_29-AM-00_55_15
Home
Index