Nuprl Lemma : pi-comm-decompose
∀[P:pi_term()]. P = picomm(picomm-pre(P);picomm-body(P)) ∈ pi_term() supposing ↑picomm?(P)
Proof
Definitions occuring in Statement :
picomm-body: picomm-body(v)
,
picomm-pre: picomm-pre(v)
,
picomm?: picomm?(v)
,
picomm: picomm(pre;body)
,
pi_term: pi_term()
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Lemmas :
pi_term-induction,
isect_wf,
assert_wf,
picomm?_wf,
equal_wf,
pi_term_wf,
picomm_wf,
picomm-pre_wf,
picomm-body_wf,
assert_elim,
pizero_wf,
bfalse_wf,
btrue_neq_bfalse,
pioption_wf,
pipar_wf,
pirep_wf,
pinew_wf,
name_wf
Latex:
\mforall{}[P:pi\_term()]. P = picomm(picomm-pre(P);picomm-body(P)) supposing \muparrow{}picomm?(P)
Date html generated:
2015_07_23-AM-11_32_54
Last ObjectModification:
2015_01_29-AM-00_55_15
Home
Index