Step
*
1
of Lemma
consensus-rcv-crosses-size
1. V : Type
2. A : Id List
3. t : ℕ+
4. n : ℤ
5. L : consensus-rcv(V;A) List
6. r : consensus-rcv(V;A)
7. ||remove-repeats(IdDeq;map(λp.(fst(p));votes-from-inning(n;L)))|| ≤ (2 * t)
8. ((2 * t) + 1) ≤ ||remove-repeats(IdDeq;map(λp.(fst(p));votes-from-inning(n;L))
@ map(λp.(fst(p));votes-from-inning(n;[r])))||
⊢ ||remove-repeats(IdDeq;map(λp.(fst(p));votes-from-inning(n;L)) @ map(λp.(fst(p));votes-from-inning(n;[r])))||
= ((2 * t) + 1)
∈ ℤ
BY
{ ((RepeatFor 2 (MoveToConcl (-1)) THEN (GenConclAtAddrType ⌈{b:Id| (b ∈ A)} List⌉ [1;1;1;2]⋅ THENA Auto))
THEN RepUR ``votes-from-inning mapfilter rcvd-inning-eq rcv-vote? rcvd-vote`` 0
THEN (D -3 THEN Try (RepeatFor 2 (D -3)))
THEN Reduce 0
THEN Try ((RWO "append-nil" 0 THEN Auto))
THEN (SplitOnConclITE THEN Reduce 0 THEN Try ((RWO "append-nil" 0 THEN Auto)))
THEN Auto) }
1
1. V : Type
2. A : Id List
3. t : ℕ+
4. n : ℤ
5. L : consensus-rcv(V;A) List
6. y1 : {b:Id| (b ∈ A)}
7. y3 : ℕ
8. y4 : V
9. v : {b:Id| (b ∈ A)} List@i
10. map(λp.(fst(p));votes-from-inning(n;L)) = v ∈ ({b:Id| (b ∈ A)} List)@i
11. n = y3 ∈ ℤ
12. ||remove-repeats(IdDeq;v)|| ≤ (2 * t)@i
13. ((2 * t) + 1) ≤ ||remove-repeats(IdDeq;v @ [y1])||@i
⊢ ||remove-repeats(IdDeq;v @ [y1])|| = ((2 * t) + 1) ∈ ℤ
Latex:
1. V : Type
2. A : Id List
3. t : \mBbbN{}\msupplus{}
4. n : \mBbbZ{}
5. L : consensus-rcv(V;A) List
6. r : consensus-rcv(V;A)
7. ||remove-repeats(IdDeq;map(\mlambda{}p.(fst(p));votes-from-inning(n;L)))|| \mleq{} (2 * t)
8. ((2 * t) + 1) \mleq{} ||remove-repeats(IdDeq;map(\mlambda{}p.(fst(p));votes-from-inning(n;L))
@ map(\mlambda{}p.(fst(p));votes-from-inning(n;[r])))||
\mvdash{} ||remove-repeats(IdDeq;map(\mlambda{}p.(fst(p));votes-from-inning(n;L))
@ map(\mlambda{}p.(fst(p));votes-from-inning(n;[r])))||
= ((2 * t) + 1)
By
((RepeatFor 2 (MoveToConcl (-1))
THEN (GenConclAtAddrType \mkleeneopen{}\{b:Id| (b \mmember{} A)\} List\mkleeneclose{} [1;1;1;2]\mcdot{} THENA Auto)
)
THEN RepUR ``votes-from-inning mapfilter rcvd-inning-eq rcv-vote? rcvd-vote`` 0
THEN (D -3 THEN Try (RepeatFor 2 (D -3)))
THEN Reduce 0
THEN Try ((RWO "append-nil" 0 THEN Auto))
THEN (SplitOnConclITE THEN Reduce 0 THEN Try ((RWO "append-nil" 0 THEN Auto)))
THEN Auto)
Home
Index