Nuprl Lemma : consensus-rel-knowledge_wf
∀[V:Type]. ∀[A:Id List]. ∀[W:{a:Id| (a ∈ A)}  List List]. ∀[x,y:ConsensusState × Knowledge(ConsensusState)].
  (consensus-rel-knowledge(V;A;W;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y), 
consensus-state5: Knowledge(ConsensusState), 
consensus-state4: ConsensusState, 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
universe: Type
Lemmas : 
exists_wf, 
Id_wf, 
l_member_wf, 
consensus-rel-knowledge-step_wf, 
consensus-state4_wf, 
consensus-state5_wf, 
list_wf
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].
\mforall{}[x,y:ConsensusState  \mtimes{}  Knowledge(ConsensusState)].
    (consensus-rel-knowledge(V;A;W;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-11_40_56
Last ObjectModification:
2015_01_28-AM-01_30_52
Home
Index