Nuprl Lemma : consensus-rel-knowledge_wf

[V:Type]. ∀[A:Id List]. ∀[W:{a:Id| (a ∈ A)}  List List]. ∀[x,y:ConsensusState × Knowledge(ConsensusState)].
  (consensus-rel-knowledge(V;A;W;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  consensus-rel-knowledge: consensus-rel-knowledge(V;A;W;x;y) consensus-state5: Knowledge(ConsensusState) consensus-state4: ConsensusState Id: Id l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] universe: Type
Lemmas :  exists_wf Id_wf l_member_wf consensus-rel-knowledge-step_wf consensus-state4_wf consensus-state5_wf list_wf
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].
\mforall{}[x,y:ConsensusState  \mtimes{}  Knowledge(ConsensusState)].
    (consensus-rel-knowledge(V;A;W;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2015_07_17-AM-11_40_56
Last ObjectModification: 2015_01_28-AM-01_30_52

Home Index