Nuprl Lemma : cp-ktype_wf

[cp:ClassProgram(Top)]. ∀[i:{i:Id| (i ∈ cp-domain(cp))} ]. ∀[k:{k:Knd| (k ∈ cp-kinds(cp) i)} ].
  (cp-ktype(cp;i;k) ∈ Type)


Proof




Definitions occuring in Statement :  cp-ktype: cp-ktype(cp;i;k) cp-kinds: cp-kinds(cp) cp-domain: cp-domain(cp) class-program: ClassProgram(T) Knd: Knd Id: Id l_member: (x ∈ l) uall: [x:A]. B[x] top: Top member: t ∈ T set: {x:A| B[x]}  apply: a universe: Type
Lemmas :  fpf-ap_wf Id_wf list_wf Knd_wf assert_wf hasloc_wf l_member_wf subtype_rel_list top_wf id-deq_wf member-fpf-dom subtype-fpf2 subtype_top
\mforall{}[cp:ClassProgram(Top)].  \mforall{}[i:\{i:Id|  (i  \mmember{}  cp-domain(cp))\}  ].  \mforall{}[k:\{k:Knd|  (k  \mmember{}  cp-kinds(cp)  i)\}  ].
    (cp-ktype(cp;i;k)  \mmember{}  Type)



Date html generated: 2015_07_17-AM-11_59_08
Last ObjectModification: 2015_01_28-AM-00_42_48

Home Index