Step
*
of Lemma
cs-ref-map-step
∀[V:Type]
({∃v1,v2:V. (¬(v1 = v2 ∈ V))}
⇒ (∀A:Id List. ∀W:{a:Id| (a ∈ A)} List List.
∀f:ConsensusState ─→ (consensus-state3(V) List)
(cs-ref-map-constraints(V;A;W;f)
⇒ (∀x,y:ts-reachable(consensus-ts4(V;A;W)).
((x ts-rel(consensus-ts4(V;A;W)) y)
⇒ {(||f x|| ≤ ||f y||)
∧ (∃i:ℤ
((∀j:ℕ||f x||. f y[j] = f x[j] ∈ consensus-state3(V) supposing ¬(j = i ∈ ℤ))
∧ (||f y|| = (||f x|| + 1) ∈ ℤ) ∧ (f y[||f x||] = INITIAL ∈ consensus-state3(V))
supposing ||f x|| < ||f y||))})))
supposing ||W|| ≥ 1 ))
BY
{ (Auto
THEN All (RepUR ``ts-reachable ts-rel consensus-ts4 ts-type ts-init``)⋅
THEN D -3
THEN D -2
THEN Unfold `guard` 0
THEN BetterSplitAndConcl) }
1
1. [V] : Type
2. {∃v1,v2:V. (¬(v1 = v2 ∈ V))}@i
3. A : Id List@i
4. W : {a:Id| (a ∈ A)} List List@i
5. ||W|| ≥ 1
6. f : ConsensusState ─→ (consensus-state3(V) List)@i
7. cs-ref-map-constraints(V;A;W;f)@i
8. x : ConsensusState@i
9. \\%5 : (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) x@i
10. y : ConsensusState@i
11. \\%7 : (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) y@i
12. CR[x,y]@i
⊢ ||f x|| ≤ ||f y||
2
1. [V] : Type
2. {∃v1,v2:V. (¬(v1 = v2 ∈ V))}@i
3. A : Id List@i
4. W : {a:Id| (a ∈ A)} List List@i
5. ||W|| ≥ 1
6. f : ConsensusState ─→ (consensus-state3(V) List)@i
7. cs-ref-map-constraints(V;A;W;f)@i
8. x : ConsensusState@i
9. \\%5 : (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) x@i
10. y : ConsensusState@i
11. \\%7 : (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) y@i
12. CR[x,y]@i
13. ||f x|| ≤ ||f y||
⊢ ∃i:ℤ
((∀j:ℕ||f x||. f y[j] = f x[j] ∈ consensus-state3(V) supposing ¬(j = i ∈ ℤ))
∧ (||f y|| = (||f x|| + 1) ∈ ℤ) ∧ (f y[||f x||] = INITIAL ∈ consensus-state3(V)) supposing ||f x|| < ||f y||)
Latex:
\mforall{}[V:Type]
(\{\mexists{}v1,v2:V. (\mneg{}(v1 = v2))\}
{}\mRightarrow{} (\mforall{}A:Id List. \mforall{}W:\{a:Id| (a \mmember{} A)\} List List.
\mforall{}f:ConsensusState {}\mrightarrow{} (consensus-state3(V) List)
(cs-ref-map-constraints(V;A;W;f)
{}\mRightarrow{} (\mforall{}x,y:ts-reachable(consensus-ts4(V;A;W)).
((x ts-rel(consensus-ts4(V;A;W)) y)
{}\mRightarrow{} \{(||f x|| \mleq{} ||f y||)
\mwedge{} (\mexists{}i:\mBbbZ{}
((\mforall{}j:\mBbbN{}||f x||. f y[j] = f x[j] supposing \mneg{}(j = i))
\mwedge{} (||f y|| = (||f x|| + 1)) \mwedge{} (f y[||f x||] = INITIAL)
supposing ||f x|| < ||f y||))\})))
supposing ||W|| \mgeq{} 1 ))
By
(Auto
THEN All (RepUR ``ts-reachable ts-rel consensus-ts4 ts-type ts-init``)\mcdot{}
THEN D -3
THEN D -2
THEN Unfold `guard` 0
THEN BetterSplitAndConcl)
Home
Index