Nuprl Lemma : cs-ref-map-step

[V:Type]
  ({∃v1,v2:V. (v1 v2 ∈ V))}
   (∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List.
        ∀f:ConsensusState ─→ (consensus-state3(V) List)
          (cs-ref-map-constraints(V;A;W;f)
           (∀x,y:ts-reachable(consensus-ts4(V;A;W)).
                ((x ts-rel(consensus-ts4(V;A;W)) y)
                 {(||f x|| ≤ ||f y||)
                   ∧ (∃i:ℤ
                       ((∀j:ℕ||f x||. y[j] x[j] ∈ consensus-state3(V) supposing ¬(j i ∈ ℤ))
                       ∧ (||f y|| (||f x|| 1) ∈ ℤ) ∧ (f y[||f x||] INITIAL ∈ consensus-state3(V)) 
                         supposing ||f x|| < ||f y||))}))) 
        supposing ||W|| ≥ ))


Proof




Definitions occuring in Statement :  cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f) consensus-ts4: consensus-ts4(V;A;W) consensus-state4: ConsensusState cs-initial: INITIAL consensus-state3: consensus-state3(T) Id: Id l_member: (x ∈ l) select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} infix_ap: y ge: i ≥  le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts)
Lemmas :  decidable__le length_wf consensus-state3_wf length_wf_nat decidable__lt false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-commutes add_functionality_wrt_le le-add-cancel consensus-ts4-inning-rel rel_rel_star ts-type_wf consensus-ts4_wf ts-rel_wf subtype_rel_self Id_wf l_member_wf fpf_wf le_transitivity cs-inning_wf le_wf less_than_irreflexivity all_wf int_seg_wf isect_wf not_wf equal-wf-T-base int_subtype_base equal_wf select_wf sq_stable__le less_than_transitivity1 less_than_wf zero-le-nat decidable__equal_Id set_wf cs-estimate_wf member_wf fpf-domain_wf top_wf consensus-state4-subtype iff_wf subtype-fpf2 subtype_base_sq atom2_subtype_base member_singleton or_wf fpf-single_wf fpf-domain-join int-deq_wf int_seg_properties fpf-ap_wf squash_wf assert_wf fpf-dom_wf subtype_top deq_wf member-fpf-dom fpf-join-ap-sq bool_wf bnot_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot member-fpf-domain fpf-join-dom equal-wf-base-T fpf-single-dom le_antisymmetry_iff add-associates not-equal-2 le-add-cancel2 le_weakening cs-ref-map-equal lelt_wf iff_weakening_equal cs-not-completed_wf cs-archived_wf list_wf cs-inning-committable_wf cs-inning-committed_wf nat_wf non_neg_length decidable__equal_int less-iff-le zero-add add-mul-special zero-mul add-zero hd_wf hd_member list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma consensus-ts4-estimate-domain infix_ap_wf rel_star_wf ts-init_wf exists_wf
\mforall{}[V:Type]
    (\{\mexists{}v1,v2:V.  (\mneg{}(v1  =  v2))\}
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
                \mforall{}f:ConsensusState  {}\mrightarrow{}  (consensus-state3(V)  List)
                    (cs-ref-map-constraints(V;A;W;f)
                    {}\mRightarrow{}  (\mforall{}x,y:ts-reachable(consensus-ts4(V;A;W)).
                                ((x  ts-rel(consensus-ts4(V;A;W))  y)
                                {}\mRightarrow{}  \{(||f  x||  \mleq{}  ||f  y||)
                                      \mwedge{}  (\mexists{}i:\mBbbZ{}
                                              ((\mforall{}j:\mBbbN{}||f  x||.  f  y[j]  =  f  x[j]  supposing  \mneg{}(j  =  i))
                                              \mwedge{}  (||f  y||  =  (||f  x||  +  1))  \mwedge{}  (f  y[||f  x||]  =  INITIAL) 
                                                  supposing  ||f  x||  <  ||f  y||))\}))) 
                supposing  ||W||  \mgeq{}  1  ))



Date html generated: 2015_07_17-AM-11_35_25
Last ObjectModification: 2015_07_16-AM-10_16_51

Home Index