Nuprl Lemma : ts-init_wf
∀[ts:transition-system{i:l}]. (ts-init(ts) ∈ ts-type(ts))
Proof
Definitions occuring in Statement : 
ts-init: ts-init(ts)
, 
ts-type: ts-type(ts)
, 
transition-system: transition-system{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
ts-init: ts-init(ts)
, 
ts-type: ts-type(ts)
, 
transition-system: transition-system{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rel_star_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
setEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache
Latex:
\mforall{}[ts:transition-system\{i:l\}].  (ts-init(ts)  \mmember{}  ts-type(ts))
Date html generated:
2016_05_15-PM-05_38_35
Last ObjectModification:
2015_12_27-PM-02_06_08
Theory : general
Home
Index