Nuprl Lemma : cs-ref-map-equal
∀[V:Type]. ∀[A:Id List]. ∀[W:{a:Id| (a ∈ A)}  List List]. ∀[f:ConsensusState ─→ (consensus-state3(V) List)].
  ∀[x,y:ConsensusState]. ∀[i:ℕ||f x||].
    (f x[i] = f y[i] ∈ consensus-state3(V)) supposing 
       ((∀v:V
           ((in state x, inning i could commit v  
⇐⇒ in state y, inning i could commit v )
           ∧ (in state x, inning i has committed v 
⇐⇒ in state y, inning i has committed v))) and 
       i < ||f y||) 
  supposing cs-ref-map-constraints(V;A;W;f)
Proof
Definitions occuring in Statement : 
cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f)
, 
cs-inning-committable: in state s, inning i could commit v 
, 
cs-inning-committed: in state s, inning i has committed v
, 
consensus-state4: ConsensusState
, 
consensus-state3: consensus-state3(T)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
cs-inning-committable_wf, 
cs-inning-committed_wf, 
int_seg_subtype-nat, 
length_wf, 
consensus-state3_wf, 
false_wf, 
all_wf, 
iff_wf, 
less_than_wf, 
int_seg_wf, 
consensus-state4_wf, 
cs-ref-map-constraints_wf, 
list_wf, 
Id_wf, 
l_member_wf, 
exists_wf, 
not_wf, 
equal_wf, 
equal-wf-T-base, 
select_wf, 
sq_stable__le, 
cs-commited_wf, 
cs-considering_wf, 
consensus-state3-cases, 
iff_weakening_equal
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].
\mforall{}[f:ConsensusState  {}\mrightarrow{}  (consensus-state3(V)  List)].
    \mforall{}[x,y:ConsensusState].  \mforall{}[i:\mBbbN{}||f  x||].
        (f  x[i]  =  f  y[i])  supposing 
              ((\mforall{}v:V
                      ((in  state  x,  inning  i  could  commit  v    \mLeftarrow{}{}\mRightarrow{}  in  state  y,  inning  i  could  commit  v  )
                      \mwedge{}  (in  state  x,  inning  i  has  committed  v  \mLeftarrow{}{}\mRightarrow{}  in  state  y,  inning  i  has  committed  v)))  and 
              i  <  ||f  y||) 
    supposing  cs-ref-map-constraints(V;A;W;f)
Date html generated:
2015_07_17-AM-11_32_18
Last ObjectModification:
2015_02_04-PM-04_59_53
Home
Index