Nuprl Lemma : fpf-single-dom

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y:A]. ∀[v:Top].  uiff(↑x ∈ dom(y v);x y ∈ A)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-dom: x ∈ dom(f) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T
Lemmas :  assert_wf bor_wf eqof_wf bfalse_wf or_wf equal_wf false_wf uiff_wf deq_member_cons_lemma deq_member_nil_lemma iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq assert_witness
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x,y:A].  \mforall{}[v:Top].    uiff(\muparrow{}x  \mmember{}  dom(y  :  v);x  =  y)



Date html generated: 2015_07_17-AM-11_12_43
Last ObjectModification: 2015_01_28-AM-07_41_33

Home Index