Nuprl Lemma : ts-rel_wf

[ts:transition-system{i:l}]. (ts-rel(ts) ∈ ts-type(ts) ⟶ ts-type(ts) ⟶ ℙ)


Proof




Definitions occuring in Statement :  ts-rel: ts-rel(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  ts-rel: ts-rel(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} uall: [x:A]. B[x] member: t ∈ T pi1: fst(t) pi2: snd(t) prop: infix_ap: y subtype_rel: A ⊆B
Lemmas referenced :  rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productElimination thin hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry productEquality universeEquality cumulativity functionEquality setEquality applyEquality lemma_by_obid isectElimination because_Cache

Latex:
\mforall{}[ts:transition-system\{i:l\}].  (ts-rel(ts)  \mmember{}  ts-type(ts)  {}\mrightarrow{}  ts-type(ts)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-05_38_58
Last ObjectModification: 2015_12_27-PM-02_04_46

Theory : general


Home Index