Step
*
1
1
1
1
1
1
of Lemma
cut-of-singleton
.....wf..... 
1. Info : Type@i'
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. e : E(X)@i
6. ∀[s:fset(E(X))]. (s ⊆ cut(X;f;s) ∧ (∀[c':Cut(X;f)]. cut(X;f;s) ⊆ c' supposing s ⊆ c'))
7. {f e} ⊆ cut(X;f;{f e})
8. ∀[c':Cut(X;f)]. cut(X;f;{f e}) ⊆ c' supposing {f e} ⊆ c'
9. {e} ⊆ cut(X;f;{e})
10. ∀[c':Cut(X;f)]. cut(X;f;{e}) ⊆ c' supposing {e} ⊆ c'
11. ↑e ∈b prior(X)
12. (f e) = e ∈ E
13. {prior(X)(e)} ⊆ cut(X;f;{prior(X)(e)})
14. ∀[c':Cut(X;f)]. cut(X;f;{prior(X)(e)}) ⊆ c' supposing {prior(X)(e)} ⊆ c'
⊢ cut(X;f;{prior(X)(e)})+e ∈ Cut(X;f)
BY
{ (MemCD THEN Try ((D 0 THENM BackThruHyp' (-3))) THEN Auto) }
Latex:
Latex:
.....wf..... 
1.  Info  :  Type@i'
2.  es  :  EO+(Info)@i'
3.  X  :  EClass(Top)@i'
4.  f  :  sys-antecedent(es;X)@i
5.  e  :  E(X)@i
6.  \mforall{}[s:fset(E(X))].  (s  \msubseteq{}  cut(X;f;s)  \mwedge{}  (\mforall{}[c':Cut(X;f)].  cut(X;f;s)  \msubseteq{}  c'  supposing  s  \msubseteq{}  c'))
7.  \{f  e\}  \msubseteq{}  cut(X;f;\{f  e\})
8.  \mforall{}[c':Cut(X;f)].  cut(X;f;\{f  e\})  \msubseteq{}  c'  supposing  \{f  e\}  \msubseteq{}  c'
9.  \{e\}  \msubseteq{}  cut(X;f;\{e\})
10.  \mforall{}[c':Cut(X;f)].  cut(X;f;\{e\})  \msubseteq{}  c'  supposing  \{e\}  \msubseteq{}  c'
11.  \muparrow{}e  \mmember{}\msubb{}  prior(X)
12.  (f  e)  =  e
13.  \{prior(X)(e)\}  \msubseteq{}  cut(X;f;\{prior(X)(e)\})
14.  \mforall{}[c':Cut(X;f)].  cut(X;f;\{prior(X)(e)\})  \msubseteq{}  c'  supposing  \{prior(X)(e)\}  \msubseteq{}  c'
\mvdash{}  cut(X;f;\{prior(X)(e)\})+e  \mmember{}  Cut(X;f)
By
Latex:
(MemCD  THEN  Try  ((D  0  THENM  BackThruHyp'  (-3)))  THEN  Auto)
Home
Index