Step
*
1
1
of Lemma
cut-order-implies
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [R] : E(X) ─→ E(X) ─→ ℙ
6. Refl(E(X);a,b.R[a;b])@i
7. Trans(E(X);a,b.R[a;b])@i
8. ∀b:E(X). R[f b;b] supposing ¬(loc(f b) = loc(b) ∈ Id)@i
9. ∀a,b:E(X). ((a <loc b)
⇒ R[a;b])@i
10. b : E(X)@i
11. ∀a:E(X). (∀a@0:E(X). (a@0 ≤(X;f) a
⇒ (R a@0 a))) supposing ((¬(a = b ∈ E(X))) and a ≤(X;f) b)@i
12. a : E(X)@i
13. ¬(loc(f b) = loc(b) ∈ Id)
14. (f b < b)
15. a ≤(X;f) f b
⊢ R a b
BY
{ (InstHyp [⌈f b⌉;⌈a⌉] (-5)⋅ THEN Auto)⋅ }
1
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [R] : E(X) ─→ E(X) ─→ ℙ
6. Refl(E(X);a,b.R[a;b])@i
7. Trans(E(X);a,b.R[a;b])@i
8. ∀b:E(X). R[f b;b] supposing ¬(loc(f b) = loc(b) ∈ Id)@i
9. ∀a,b:E(X). ((a <loc b)
⇒ R[a;b])@i
10. b : E(X)@i
11. ∀a:E(X). (∀a@0:E(X). (a@0 ≤(X;f) a
⇒ (R a@0 a))) supposing ((¬(a = b ∈ E(X))) and a ≤(X;f) b)@i
12. a : E(X)@i
13. ¬(loc(f b) = loc(b) ∈ Id)
14. (f b < b)
15. a ≤(X;f) f b
16. R a (f b)
⊢ R a b
Latex:
Latex:
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [R] : E(X) {}\mrightarrow{} E(X) {}\mrightarrow{} \mBbbP{}
6. Refl(E(X);a,b.R[a;b])@i
7. Trans(E(X);a,b.R[a;b])@i
8. \mforall{}b:E(X). R[f b;b] supposing \mneg{}(loc(f b) = loc(b))@i
9. \mforall{}a,b:E(X). ((a <loc b) {}\mRightarrow{} R[a;b])@i
10. b : E(X)@i
11. \mforall{}a:E(X). (\mforall{}a@0:E(X). (a@0 \mleq{}(X;f) a {}\mRightarrow{} (R a@0 a))) supposing ((\mneg{}(a = b)) and a \mleq{}(X;f) b)@i
12. a : E(X)@i
13. \mneg{}(loc(f b) = loc(b))
14. (f b < b)
15. a \mleq{}(X;f) f b
\mvdash{} R a b
By
Latex:
(InstHyp [\mkleeneopen{}f b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}] (-5)\mcdot{} THEN Auto)\mcdot{}
Home
Index