Nuprl Lemma : cut-order-implies

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
    ∀[R:E(X) ─→ E(X) ─→ ℙ]
      (Refl(E(X);a,b.R[a;b])
       Trans(E(X);a,b.R[a;b])
       (∀b:E(X). R[f b;b] supposing ¬(loc(f b) loc(b) ∈ Id))
       (∀a,b:E(X).  ((a <loc b)  R[a;b]))
       (∀a,b:E(X).  R[a;b] supposing a ≤(X;f) b))


Proof




Definitions occuring in Statement :  cut-order: a ≤(X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-loc: loc(e) Id: Id trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  cut-order_witness cut-order_wf es-E-interface_wf all_wf es-locl_wf event-ordering+_subtype isect_wf not_wf equal_wf Id_wf es-loc_wf trans_wf refl_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_wf cut-order-induction cut-order-iff and_wf cut-order-step es-causl_transitivity2 es-causle_weakening_eq es-causle_wf es-causl_irreflexivity es-prior-interface-val eclass-val_wf2 es-prior-interface_wf cut-order_weakening-le es-le_weakening es-locl_transitivity2 es-le_weakening_eq es-locl_irreflexivity

Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}]
            (Refl(E(X);a,b.R[a;b])
            {}\mRightarrow{}  Trans(E(X);a,b.R[a;b])
            {}\mRightarrow{}  (\mforall{}b:E(X).  R[f  b;b]  supposing  \mneg{}(loc(f  b)  =  loc(b)))
            {}\mRightarrow{}  (\mforall{}a,b:E(X).    ((a  <loc  b)  {}\mRightarrow{}  R[a;b]))
            {}\mRightarrow{}  (\mforall{}a,b:E(X).    R[a;b]  supposing  a  \mleq{}(X;f)  b))



Date html generated: 2015_07_21-PM-04_06_28
Last ObjectModification: 2015_01_27-PM-05_49_18

Home Index