Nuprl Lemma : cut-order-induction
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
    ∀[P:E(X) ─→ ℙ]. ((∀b:E(X). ((∀a:E(X). (P[a]) supposing ((¬(a = b ∈ E(X))) and a ≤(X;f) b)) 
⇒ P[b])) 
⇒ (∀e:E(X). P[\000Ce]))
Proof
Definitions occuring in Statement : 
cut-order: a ≤(X;f) b
, 
sys-antecedent: sys-antecedent(es;Sys)
, 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
es-causl-swellfnd, 
event-ordering+_subtype, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__equal_int, 
subtype_rel-int_seg, 
false_wf, 
le_weakening, 
subtract_wf, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
cut-order_witness, 
not_wf, 
equal_wf, 
cut-order_wf, 
all_wf, 
int_seg_subtype-nat, 
decidable__lt, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel-alt, 
less-iff-le, 
le-add-cancel, 
set_wf, 
less_than_wf, 
primrec-wf2, 
decidable__le, 
not-le-2, 
sq_stable__le, 
add-zero, 
add-mul-special, 
zero-mul, 
es-E-interface_wf, 
isect_wf, 
sys-antecedent_wf, 
eclass_wf, 
top_wf, 
es-E_wf, 
event-ordering+_wf, 
cut-order-causle, 
assert_elim, 
in-eclass_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_wf
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:E(X)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}b:E(X).  ((\mforall{}a:E(X).  (P[a])  supposing  ((\mneg{}(a  =  b))  and  a  \mleq{}(X;f)  b))  {}\mRightarrow{}  P[b]))  {}\mRightarrow{}  (\mforall{}e:E(X).  P[e\000C]))
Date html generated:
2015_07_21-PM-04_06_13
Last ObjectModification:
2015_01_27-PM-05_47_26
Home
Index