Nuprl Lemma : es-hist-partition
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[e1,e2,e:E].
  (es-hist(es;e1;e2) = (es-hist(es;e1;pred(e)) @ es-hist(es;e;e2)) ∈ (Info List)) supposing (e ≤loc e2  and (e1 <loc e))
Proof
Definitions occuring in Statement : 
es-hist: es-hist(es;e1;e2)
, 
event-ordering+: EO+(Info)
, 
es-le: e ≤loc e' 
, 
es-locl: (e <loc e')
, 
es-pred: pred(e)
, 
es-E: E
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
map_append_sq, 
map_wf, 
squash_wf, 
true_wf, 
list_wf, 
es-info_wf, 
es-le_wf, 
event-ordering+_subtype, 
es-locl_wf, 
es-E_wf, 
event-ordering+_wf, 
es-interval-partition, 
equal_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e1,e2,e:E].
    (es-hist(es;e1;e2)  =  (es-hist(es;e1;pred(e))  @  es-hist(es;e;e2)))  supposing 
          (e  \mleq{}loc  e2    and 
          (e1  <loc  e))
Date html generated:
2015_07_17-PM-00_10_01
Last ObjectModification:
2015_01_28-AM-00_07_54
Home
Index