Nuprl Lemma : es-interface-restrict-conditional
∀[Info,A:Type]. ∀[I:EClass(A)]. ∀[P:es:EO+(Info) ─→ E ─→ ℙ]. ∀[p:∀es:EO+(Info). ∀e:E.  Dec(P[es;e])].
  [(I|p)?(I|¬p)] = I ∈ EClass(A) supposing Singlevalued(I)
Proof
Definitions occuring in Statement : 
es-interface-co-restrict: (I|¬p), 
es-interface-restrict: (I|p), 
cond-class: [X?Y], 
sv-class: Singlevalued(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
function: x:A ─→ B[x], 
universe: Type, 
equal: s = t ∈ T
Lemmas : 
all_wf, 
es-E_wf, 
event-ordering+_subtype, 
decidable_wf, 
bag_size_empty_lemma, 
equal_wf, 
sv-class_wf, 
event-ordering+_wf, 
eclass_wf, 
sv-class-iff
Latex:
\mforall{}[Info,A:Type].  \mforall{}[I:EClass(A)].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
\mforall{}[p:\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(P[es;e])].
    [(I|p)?(I|\mneg{}p)]  =  I  supposing  Singlevalued(I)
Date html generated:
2015_07_20-PM-03_32_32
Last ObjectModification:
2015_01_27-PM-10_17_34
Home
Index