Nuprl Lemma : sv-class-iff

[Info:Type]. ∀[A:es:EO+(Info) ─→ E ─→ Type]. ∀[X:EClass(A[es;e])].
  (Singlevalued(X) ⇐⇒ ∀es:EO+(Info). ∀e:E.  ((X es e) if (#(X es e) =z 1) then es else {} fi  ∈ bag(A[es;e])))


Proof




Definitions occuring in Statement :  sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ─→ B[x] natural_number: $n universe: Type equal: t ∈ T bag-size: #(bs) empty-bag: {} bag: bag(T)
Lemmas :  es-E_wf event-ordering+_subtype event-ordering+_wf sv-class_wf all_wf equal_wf bag_wf eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int empty-bag_wf less_than_wf eclass_wf nequal-le-implies equal-wf-base-T bag-size-zero decidable__le nat_wf false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-associates zero-add add-commutes minus-zero add_functionality_wrt_le le-add-cancel2 le_weakening bag_size_empty_lemma le_wf squash_wf true_wf iff_weakening_equal
\mforall{}[Info:Type].  \mforall{}[A:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  Type].  \mforall{}[X:EClass(A[es;e])].
    (Singlevalued(X)
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}es:EO+(Info).  \mforall{}e:E.    ((X  es  e)  =  if  (\#(X  es  e)  =\msubz{}  1)  then  X  es  e  else  \{\}  fi  ))



Date html generated: 2015_07_17-PM-00_41_15
Last ObjectModification: 2015_02_04-PM-05_31_58

Home Index