Step
*
of Lemma
es-interface-sum-non-neg
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(ℤ)]. ∀[e:E]. (0 ≤ Σ≤e(X)) supposing ∀e:E(X). (0 ≤ X(e))
BY
{ ((Auto THEN RepUR ``es-interface-sum es-interface-local-state`` 0) THEN Assert ⌈0 ≤ prior-state(λx,y. (x + y);0;X;e)⌉⋅\000C) }
1
.....assertion.....
1. Info : Type
2. es : EO+(Info)
3. X : EClass(ℤ)
4. ∀e:E(X). (0 ≤ X(e))
5. e : E
⊢ 0 ≤ prior-state(λx,y. (x + y);0;X;e)
2
1. Info : Type
2. es : EO+(Info)
3. X : EClass(ℤ)
4. ∀e:E(X). (0 ≤ X(e))
5. e : E
6. 0 ≤ prior-state(λx,y. (x + y);0;X;e)
⊢ 0 ≤ if e ∈b X then prior-state(λx,y. (x + y);0;X;e) + X(e) else prior-state(λx,y. (x + y);0;X;e) fi
Latex:
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(\mBbbZ{})]. \mforall{}[e:E]. (0 \mleq{} \mSigma{}\mleq{}e(X)) supposing \mforall{}e:E(X). (0 \mleq{} X(e))
By
Latex:
((Auto THEN RepUR ``es-interface-sum es-interface-local-state`` 0)
THEN Assert \mkleeneopen{}0 \mleq{} prior-state(\mlambda{}x,y. (x + y);0;X;e)\mkleeneclose{}\mcdot{}
)
Home
Index