Nuprl Lemma : es-prior-interface-equal

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)]. ∀[e:E].
  (prior(X)(e) prior(Y)(e) ∈ E) supposing 
     ((∀e':E. (((prior(X)(e) <loc e') ∨ (prior(Y)(e) <loc e'))  (e' <loc e)  (↑e' ∈b ⇐⇒ ↑e' ∈b Y))) and 
     (↑e ∈b prior(X)) and 
     (↑e ∈b prior(Y)))


Proof




Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q universe: Type equal: t ∈ T
Lemmas :  all_wf or_wf es-locl_wf eclass-val_wf2 es-prior-interface_wf es-E-interface_wf iff_wf assert_wf in-eclass_wf es-prior-interface_wf0 es-interface-subtype_rel2 es-E_wf event-ordering+_subtype top_wf subtype_top eclass_wf event-ordering+_wf es-prior-interface-val es-locl-total

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].  \mforall{}[e:E].
    (prior(X)(e)  =  prior(Y)(e))  supposing 
          ((\mforall{}e':E
                  (((prior(X)(e)  <loc  e')  \mvee{}  (prior(Y)(e)  <loc  e'))
                  {}\mRightarrow{}  (e'  <loc  e)
                  {}\mRightarrow{}  (\muparrow{}e'  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e'  \mmember{}\msubb{}  Y)))  and 
          (\muparrow{}e  \mmember{}\msubb{}  prior(X))  and 
          (\muparrow{}e  \mmember{}\msubb{}  prior(Y)))



Date html generated: 2015_07_21-PM-02_46_06
Last ObjectModification: 2015_01_27-PM-07_39_32

Home Index