Nuprl Lemma : fpf-compatible_monotonic

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f1,g1,f2,g2:a:A fp-> B[a]].
  (f1 || g1) supposing (f2 || g2 and g1 ⊆ g2 and f1 ⊆ f2)


Proof




Definitions occuring in Statement :  fpf-compatible: || g fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top all_wf fpf-ap_wf deq_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f1,g1,f2,g2:a:A  fp->  B[a]].
    (f1  ||  g1)  supposing  (f2  ||  g2  and  g1  \msubseteq{}  g2  and  f1  \msubseteq{}  f2)



Date html generated: 2015_07_17-AM-09_18_32
Last ObjectModification: 2015_01_28-AM-07_50_34

Home Index