Step
*
of Lemma
fpf-disjoint-compatible
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g:a:A fp-> B[a]]. f || g supposing l_disjoint(A;fst(f);fst(g))
BY
{ (Repeat (Unfolds ``fpf fpf-compatible fpf-dom fpf-ap`` 0) THEN Auto THEN DVar `f' THEN DVar `g' THEN All Reduce) }
1
1. A : Type
2. eq : EqDecider(A)
3. B : A ─→ Type
4. d : A List
5. f1 : a:{a:A| (a ∈ d)} ─→ B[a]
6. d1 : A List
7. g1 : a:{a:A| (a ∈ d1)} ─→ B[a]
8. l_disjoint(A;d;d1)
9. x : A@i
10. ↑x ∈b d)@i
11. ↑x ∈b d1)@i
⊢ (f1 x) = (g1 x) ∈ B[x]
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[f,g:a:A fp-> B[a]].
f || g supposing l\_disjoint(A;fst(f);fst(g))
By
(Repeat (Unfolds ``fpf fpf-compatible fpf-dom fpf-ap`` 0)
THEN Auto
THEN DVar `f'
THEN DVar `g'
THEN All Reduce)
Home
Index