Nuprl Lemma : fpf-disjoint-compatible
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g:a:A fp-> B[a]].  f || g supposing l_disjoint(A;fst(f);fst(g))
Proof
Definitions occuring in Statement : 
fpf-compatible: f || g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
l_disjoint: l_disjoint(T;l1;l2), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
function: x:A ─→ B[x], 
universe: Type
Lemmas : 
assert_wf, 
deq-member_wf, 
l_disjoint_wf, 
list_wf, 
l_member_wf, 
deq_wf, 
assert-deq-member
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].
    f  ||  g  supposing  l\_disjoint(A;fst(f);fst(g))
Date html generated:
2015_07_17-AM-11_12_19
Last ObjectModification:
2015_01_28-AM-07_42_08
Home
Index