Step
*
of Lemma
fpf-join-list-ap2
∀[A:Type]
  ∀eq:EqDecider(A)
    ∀[B:A ─→ Type]
      ∀L:a:A fp-> B[a] List. ∀x:A.  ((x ∈ fpf-domain(⊕(L))) 
⇒ (∃f∈L. (↑x ∈ dom(f)) ∧ (⊕(L)(x) = f(x) ∈ B[x])))
BY
{ (InstLemma `fpf-join-list-ap` [] THEN RepeatFor 5 ((ParallelLast THEN Thin (-3)))) }
1
1. [A] : Type
2. eq : EqDecider(A)@i
3. [B] : A ─→ Type
4. L : a:A fp-> B[a] List@i
5. x : A@i
6. (∃f∈L. (↑x ∈ dom(f)) ∧ (⊕(L)(x) = f(x) ∈ B[x])) supposing ↑x ∈ dom(⊕(L))
⊢ (x ∈ fpf-domain(⊕(L))) 
⇒ (∃f∈L. (↑x ∈ dom(f)) ∧ (⊕(L)(x) = f(x) ∈ B[x]))
Latex:
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.
                ((x  \mmember{}  fpf-domain(\moplus{}(L)))  {}\mRightarrow{}  (\mexists{}f\mmember{}L.  (\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\moplus{}(L)(x)  =  f(x))))
By
(InstLemma  `fpf-join-list-ap`  []  THEN  RepeatFor  5  ((ParallelLast  THEN  Thin  (-3))))
Home
Index