Step * 1 2 1 1 of Lemma fpf-join-range


1. Type
2. eq EqDecider(A)
3. df x:A fp-> Type
4. x:A fp-> df(x)?Top
5. dg x:A fp-> Type
6. x:A fp-> dg(x)?Top
7. df || dg
8. ∀x:A. ((↑x ∈ dom(f))  (↑x ∈ dom(df)))
9. ∀x:A. ((↑x ∈ dom(g))  (↑x ∈ dom(dg)))
10. A@i
11. (a ∈ (fst(f)) filter(λa.(¬ba ∈ dom(f));fst(g)))@i
⊢ f(a)?g(a) ∈ df ⊕ dg(a)?Top
BY
(((RW (AddrC [2] (UnfoldC `fpf-cap`)) 0) THEN SplitOnConclITE) THENA Auto) }

1
.....truecase..... 
1. Type
2. eq EqDecider(A)
3. df x:A fp-> Type
4. x:A fp-> df(x)?Top
5. dg x:A fp-> Type
6. x:A fp-> dg(x)?Top
7. df || dg
8. ∀x:A. ((↑x ∈ dom(f))  (↑x ∈ dom(df)))
9. ∀x:A. ((↑x ∈ dom(g))  (↑x ∈ dom(dg)))
10. A@i
11. (a ∈ (fst(f)) filter(λa.(¬ba ∈ dom(f));fst(g)))@i
12. ↑a ∈ dom(f)
⊢ f(a) ∈ df ⊕ dg(a)?Top

2
.....falsecase..... 
1. Type
2. eq EqDecider(A)
3. df x:A fp-> Type
4. x:A fp-> df(x)?Top
5. dg x:A fp-> Type
6. x:A fp-> dg(x)?Top
7. df || dg
8. ∀x:A. ((↑x ∈ dom(f))  (↑x ∈ dom(df)))
9. ∀x:A. ((↑x ∈ dom(g))  (↑x ∈ dom(dg)))
10. A@i
11. (a ∈ (fst(f)) filter(λa.(¬ba ∈ dom(f));fst(g)))@i
12. ¬↑a ∈ dom(f)
⊢ g(a) ∈ df ⊕ dg(a)?Top


Latex:



1.  A  :  Type
2.  eq  :  EqDecider(A)
3.  df  :  x:A  fp->  Type
4.  f  :  x:A  fp->  df(x)?Top
5.  dg  :  x:A  fp->  Type
6.  g  :  x:A  fp->  dg(x)?Top
7.  df  ||  dg
8.  \mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(f))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(df)))
9.  \mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(dg)))
10.  a  :  A@i
11.  (a  \mmember{}  (fst(f))  @  filter(\mlambda{}a.(\mneg{}\msubb{}a  \mmember{}  dom(f));fst(g)))@i
\mvdash{}  f(a)?g(a)  \mmember{}  df  \moplus{}  dg(a)?Top


By

(((RW  (AddrC  [2]  (UnfoldC  `fpf-cap`))  0)  THEN  SplitOnConclITE)  THENA  Auto)




Home Index