Nuprl Lemma : fpf-join-range

[A:Type]. ∀[eq:EqDecider(A)]. ∀[df:x:A fp-> Type]. ∀[f:x:A fp-> df(x)?Top]. ∀[dg:x:A fp-> Type].
[g:x:A fp-> dg(x)?Top].
  (f ⊕ g ∈ x:A fp-> df ⊕ dg(x)?Top) supposing 
     ((∀x:A. ((↑x ∈ dom(g))  (↑x ∈ dom(dg)))) and 
     (∀x:A. ((↑x ∈ dom(f))  (↑x ∈ dom(df)))) and 
     df || dg)


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-cap: f(x)?z fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q member: t ∈ T universe: Type
Lemmas :  all_wf assert_wf fpf-dom_wf subtype-fpf2 subtype_top fpf-cap_wf top_wf fpf-compatible_wf fpf_wf deq_wf append_wf filter_wf5 l_member_wf bnot_wf deq-member_wf bool_wf equal-wf-T-base not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-ap_wf fpf-join_wf subtype_rel_wf squash_wf true_wf fpf-join-ap iff_weakening_equal subtype_rel_self fpf-join-dom member_append assert-deq-member member_filter_2 subtype_rel_weakening ext-eq_weakening
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[df:x:A  fp->  Type].  \mforall{}[f:x:A  fp->  df(x)?Top].  \mforall{}[dg:x:A  fp->  Type].
\mforall{}[g:x:A  fp->  dg(x)?Top].
    (f  \moplus{}  g  \mmember{}  x:A  fp->  df  \moplus{}  dg(x)?Top)  supposing 
          ((\mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(dg))))  and 
          (\mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(f))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(df))))  and 
          df  ||  dg)



Date html generated: 2015_07_17-AM-09_20_26
Last ObjectModification: 2015_02_04-PM-05_07_44

Home Index