Step
*
1
of Lemma
fpf-restrict-cap
1. A : Type
2. P : A ─→ 𝔹
3. x : A
4. ↑(P x)
5. f : x:A fp-> Top
6. eq : EqDecider(A)
7. z : Top
⊢ x ∈ dom(fpf-restrict(f;P)) ~ x ∈ dom(f)
BY
{ ((Auto THEN (BLemma `iff_imp_equal_bool` THENM RW assert_pushdownC 0 THENM (RWO "member-fpf-domain" 0 THEN Reduce 0)))
THENA Auto
) }
1
1. A : Type
2. P : A ─→ 𝔹
3. x : A
4. ↑(P x)
5. f : x:A fp-> Top
6. eq : EqDecider(A)
7. z : Top
⊢ (x ∈ filter(P;fpf-domain(f)))
⇐⇒ (x ∈ fpf-domain(f))
2
1. A : Type
2. P : A ─→ 𝔹
3. x : A
4. ↑(P x)
5. f : x:A fp-> Top
6. eq : EqDecider(A)
7. z : Top
8. (x ∈ fpf-domain(fpf-restrict(f;P)))
⇐⇒ (x ∈ fpf-domain(f))
⊢ (x ∈ filter(P;fpf-domain(f)))
⇐⇒ (x ∈ fpf-domain(f)) ∈ Type
Latex:
1. A : Type
2. P : A {}\mrightarrow{} \mBbbB{}
3. x : A
4. \muparrow{}(P x)
5. f : x:A fp-> Top
6. eq : EqDecider(A)
7. z : Top
\mvdash{} x \mmember{} dom(fpf-restrict(f;P)) \msim{} x \mmember{} dom(f)
By
((Auto
THEN (BLemma `iff\_imp\_equal\_bool`
THENM RW assert\_pushdownC 0
THENM (RWO "member-fpf-domain" 0 THEN Reduce 0))
)
THENA Auto
)
Home
Index