Nuprl Lemma : fpf-restrict-cap

[A:Type]. ∀[P:A ─→ 𝔹]. ∀[x:A].
  ∀[f:x:A fp-> Top]. ∀[eq:EqDecider(A)]. ∀[z:Top].  (fpf-restrict(f;P)(x)?z f(x)?z) supposing ↑(P x)


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a function: x:A ─→ B[x] universe: Type sqequal: t
Lemmas :  ap_fpf_restrict_lemma top_wf deq_wf fpf_wf assert_wf bool_wf subtype_base_sq bool_subtype_base iff_imp_equal_bool domain_fpf_restrict_lemma member-fpf-domain l_member_wf fpf-domain_wf member_filter filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf iff_wf
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    \mforall{}[f:x:A  fp->  Top].  \mforall{}[eq:EqDecider(A)].  \mforall{}[z:Top].    (fpf-restrict(f;P)(x)?z  \msim{}  f(x)?z) 
    supposing  \muparrow{}(P  x)



Date html generated: 2015_07_17-AM-11_15_02
Last ObjectModification: 2015_01_28-AM-07_39_07

Home Index