Step
*
of Lemma
fresh-inning-reachable
∀[V:Type]
∀A:Id List. ∀W:{a:Id| (a ∈ A)} List List. ∀ws:{a:Id| (a ∈ A)} List. ∀x:ConsensusState. ∀i:ℤ.
((ws ∈ W)
⇒ x ((λx,y. CR(in ws)[x, y] )^*) (λa.<if a ∈b ws) then i else Inning(x;a) fi , Estimate(x;a)>)
supposing (∀a∈ws.Inning(x;a) < i))
BY
{ (Auto
THEN Assert ⌈∀n:ℕ
(x
((λx,y. CR(in ws)[x, y] )^*)
(λa.<if a ∈b firstn(n;A)) ∧b a ∈b ws) then i else Inning(x;a) fi , Estimate(x;a)>))⌉⋅
) }
1
.....assertion.....
1. [V] : Type
2. A : Id List@i
3. W : {a:Id| (a ∈ A)} List List@i
4. ws : {a:Id| (a ∈ A)} List@i
5. x : ConsensusState@i
6. i : ℤ@i
7. (ws ∈ W)@i
8. (∀a∈ws.Inning(x;a) < i)
⊢ ∀n:ℕ. (x ((λx,y. CR(in ws)[x, y] )^*) (λa.<if a ∈b firstn(n;A)) ∧b a ∈b ws) then i else Inning(x;a) fi , Estimate(x;a)\000C>))
2
1. [V] : Type
2. A : Id List@i
3. W : {a:Id| (a ∈ A)} List List@i
4. ws : {a:Id| (a ∈ A)} List@i
5. x : ConsensusState@i
6. i : ℤ@i
7. (ws ∈ W)@i
8. (∀a∈ws.Inning(x;a) < i)
9. ∀n:ℕ. (x ((λx,y. CR(in ws)[x, y] )^*) (λa.<if a ∈b firstn(n;A)) ∧b a ∈b ws) then i else Inning(x;a) fi , Estimate(x;a\000C)>))
⊢ x ((λx,y. CR(in ws)[x, y] )^*) (λa.<if a ∈b ws) then i else Inning(x;a) fi , Estimate(x;a)>)
Latex:
\mforall{}[V:Type]
\mforall{}A:Id List. \mforall{}W:\{a:Id| (a \mmember{} A)\} List List. \mforall{}ws:\{a:Id| (a \mmember{} A)\} List. \mforall{}x:ConsensusState. \mforall{}i:\mBbbZ{}.
((ws \mmember{} W)
{}\mRightarrow{} x
((\mlambda{}x,y. CR(in ws)[x, y] )\^{}*)
(\mlambda{}a.<if a \mmember{}\msubb{} ws) then i else Inning(x;a) fi , Estimate(x;a)>)
supposing (\mforall{}a\mmember{}ws.Inning(x;a) < i))
By
(Auto
THEN Assert \mkleeneopen{}\mforall{}n:\mBbbN{}
(x
rel\_star(ConsensusState; \mlambda{}x,y. CR(in ws)[x, y] )
(\mlambda{}a.<if a \mmember{}\msubb{} firstn(n;A)) \mwedge{}\msubb{} a \mmember{}\msubb{} ws) then i else Inning(x;a) fi
, Estimate(x;a)
>))\mkleeneclose{}\mcdot{}
)
Home
Index