Nuprl Lemma : fun-connected-relation
∀[Info:Type]
∀es:EO+(Info). ∀X:EClass(Top). ∀f:E(X) ─→ E(X).
∀[R:E(X) ─→ E(X) ─→ ℙ]
(Trans(E(X);e',e.R[e';e])
⇒ Refl(E(X);e',e.R[e';e])
⇒ (∀x:E(X). R[f x;x])
⇒ (∀e',e:E(X). (e' is f*(e)
⇒ R[e';e])))
Proof
Definitions occuring in Statement :
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
trans: Trans(T;x,y.E[x; y])
,
refl: Refl(T;x,y.E[x; y])
,
uall: ∀[x:A]. B[x]
,
top: Top
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ─→ B[x]
,
universe: Type
,
fun-connected: y is f*(x)
Lemmas :
fun-connected-induction,
fun-connected_wf,
not_wf,
equal_wf,
all_wf,
refl_wf,
trans_wf,
es-E-interface_wf,
eclass_wf,
top_wf,
es-E_wf,
event-ordering+_subtype,
event-ordering+_wf,
and_wf
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}X:EClass(Top). \mforall{}f:E(X) {}\mrightarrow{} E(X).
\mforall{}[R:E(X) {}\mrightarrow{} E(X) {}\mrightarrow{} \mBbbP{}]
(Trans(E(X);e',e.R[e';e])
{}\mRightarrow{} Refl(E(X);e',e.R[e';e])
{}\mRightarrow{} (\mforall{}x:E(X). R[f x;x])
{}\mRightarrow{} (\mforall{}e',e:E(X). (e' is f*(e) {}\mRightarrow{} R[e';e])))
Date html generated:
2015_07_17-PM-01_01_30
Last ObjectModification:
2015_01_27-PM-10_42_08
Home
Index