Step * 2 2 1 1 2 2 2 of Lemma global-order-compat-combine


1. Info Type
2. L1 (Id × Info) List@i
3. ys (Id × Info) List@i
4. Id × Info@i
5. L1 || ys [y]@i
6. (Id × Info) List@i
7. L1 ≤ L@i
8. : ℕ||ys|| ─→ ℕ||L||@i
9. ∀i,j:ℕ||ys||.  (i <  (f i < j ∨ j < ||L1||))@i
10. ∀j:ℕ||ys||
      ((ys[j] L[f j] ∈ (Id × Info))
      ∧ (filter(λx.fst(x) fst(ys[j]);firstn(j 1;ys))
        filter(λx.fst(x) fst(ys[j]);firstn((f j) 1;L))
        ∈ ((Id × Info) List)))@i
11. ∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys||. (x (f i) ∈ ℤ)))@i
12. ys ≤ L, locally@i
13. ∀i:Id
      ((filter(λx.fst(x) i;L) filter(λx.fst(x) i;L1) ∈ ((Id × Info) List))
      ∨ (filter(λx.fst(x) i;L) filter(λx.fst(x) i;ys) ∈ ((Id × Info) List)))@i
14. ||filter(λx.fst(x) fst(y);L1)|| ≤ ||filter(λx.fst(x) fst(y);ys)||
15. filter(λx.fst(x) fst(y);ys) filter(λx.fst(x) fst(y);L) ∈ ((Id × Info) List)
16. L1 ≤ [y]
17. : ℕ||ys [y]||@i
18. ¬j < ||ys||
⊢ ([y][j ||ys||] if ||L|| <||L|| then L[||L||] else [y][||L|| ||L||] fi  ∈ (Id × Info))
∧ (filter(λx.fst(x) fst([y][j ||ys||]);firstn(j 1;ys [y]))
  filter(λx.fst(x) fst([y][j ||ys||]);firstn(||L|| 1;L [y]))
  ∈ ((Id × Info) List))
BY
((Subst' ||ys|| THENA Auto') THEN Reduce 0) }

1
1. Info Type
2. L1 (Id × Info) List@i
3. ys (Id × Info) List@i
4. Id × Info@i
5. L1 || ys [y]@i
6. (Id × Info) List@i
7. L1 ≤ L@i
8. : ℕ||ys|| ─→ ℕ||L||@i
9. ∀i,j:ℕ||ys||.  (i <  (f i < j ∨ j < ||L1||))@i
10. ∀j:ℕ||ys||
      ((ys[j] L[f j] ∈ (Id × Info))
      ∧ (filter(λx.fst(x) fst(ys[j]);firstn(j 1;ys))
        filter(λx.fst(x) fst(ys[j]);firstn((f j) 1;L))
        ∈ ((Id × Info) List)))@i
11. ∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys||. (x (f i) ∈ ℤ)))@i
12. ys ≤ L, locally@i
13. ∀i:Id
      ((filter(λx.fst(x) i;L) filter(λx.fst(x) i;L1) ∈ ((Id × Info) List))
      ∨ (filter(λx.fst(x) i;L) filter(λx.fst(x) i;ys) ∈ ((Id × Info) List)))@i
14. ||filter(λx.fst(x) fst(y);L1)|| ≤ ||filter(λx.fst(x) fst(y);ys)||
15. filter(λx.fst(x) fst(y);ys) filter(λx.fst(x) fst(y);L) ∈ ((Id × Info) List)
16. L1 ≤ [y]
17. : ℕ||ys [y]||@i
18. ¬j < ||ys||
⊢ (y if ||L|| <||L|| then L[||L||] else [y][||L|| ||L||] fi  ∈ (Id × Info))
∧ (filter(λx.fst(x) fst(y);firstn(j 1;ys [y]))
  filter(λx.fst(x) fst(y);firstn(||L|| 1;L [y]))
  ∈ ((Id × Info) List))


Latex:



Latex:

1.  Info  :  Type
2.  L1  :  (Id  \mtimes{}  Info)  List@i
3.  ys  :  (Id  \mtimes{}  Info)  List@i
4.  y  :  Id  \mtimes{}  Info@i
5.  L1  ||  ys  @  [y]@i
6.  L  :  (Id  \mtimes{}  Info)  List@i
7.  L1  \mleq{}  L@i
8.  f  :  \mBbbN{}||ys||  {}\mrightarrow{}  \mBbbN{}||L||@i
9.  \mforall{}i,j:\mBbbN{}||ys||.    (i  <  j  {}\mRightarrow{}  (f  i  <  f  j  \mvee{}  f  j  <  ||L1||))@i
10.  \mforall{}j:\mBbbN{}||ys||
            ((ys[j]  =  L[f  j])
            \mwedge{}  (filter(\mlambda{}x.fst(x)  =  fst(ys[j]);firstn(j  +  1;ys))
                =  filter(\mlambda{}x.fst(x)  =  fst(ys[j]);firstn((f  j)  +  1;L))))@i
11.  \mforall{}x:\mBbbN{}||L||.  (x  <  ||L1||  \mvee{}  (\mexists{}i:\mBbbN{}||ys||.  (x  =  (f  i))))@i
12.  ys  \mleq{}  L,  locally@i
13.  \mforall{}i:Id
            ((filter(\mlambda{}x.fst(x)  =  i;L)  =  filter(\mlambda{}x.fst(x)  =  i;L1))
            \mvee{}  (filter(\mlambda{}x.fst(x)  =  i;L)  =  filter(\mlambda{}x.fst(x)  =  i;ys)))@i
14.  ||filter(\mlambda{}x.fst(x)  =  fst(y);L1)||  \mleq{}  ||filter(\mlambda{}x.fst(x)  =  fst(y);ys)||
15.  filter(\mlambda{}x.fst(x)  =  fst(y);ys)  =  filter(\mlambda{}x.fst(x)  =  fst(y);L)
16.  L1  \mleq{}  L  @  [y]
17.  j  :  \mBbbN{}||ys  @  [y]||@i
18.  \mneg{}j  <  ||ys||
\mvdash{}  ([y][j  -  ||ys||]  =  if  ||L||  <z  ||L||  then  L[||L||]  else  [y][||L||  -  ||L||]  fi  )
\mwedge{}  (filter(\mlambda{}x.fst(x)  =  fst([y][j  -  ||ys||]);firstn(j  +  1;ys  @  [y]))
    =  filter(\mlambda{}x.fst(x)  =  fst([y][j  -  ||ys||]);firstn(||L||  +  1;L  @  [y])))


By


Latex:
((Subst'  j  -  ||ys||  \msim{}  0  0  THENA  Auto')  THEN  Reduce  0)




Home Index