Step
*
1
of Lemma
global-order-pairwise-compat-squash-invariant
.....assertion.....
1. [Info] : Type
2. [P] : Id ─→ Info List+ ─→ ℙ
3. [R] : Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) ∈ EO+(Info) ─→ ℙ
⊢ ∀LL:(Id × Info) List List
((∀L1,L2∈LL. L1 || L2)
⇒ (∀L∈LL.squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
⇒ (∃G:(Id × Info) List
((∀L':(Id × Info) List. ((∀L∈LL.L || L')
⇒ G || L'))
∧ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
∧ (∀L∈LL.∃f:E ─→ E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))))
BY
{ (InductionOnList THEN Auto) }
1
1. [Info] : Type
2. [P] : Id ─→ Info List+ ─→ ℙ
3. [R] : Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) ∈ EO+(Info) ─→ ℙ
5. (∀L1,L2∈[]. L1 || L2)@i'
6. (∀L∈[].squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))@i
⊢ ∃G:(Id × Info) List
((∀L':(Id × Info) List. ((∀L∈[].L || L')
⇒ G || L'))
∧ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
∧ (∀L∈[].∃f:E ─→ E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))
2
1. [Info] : Type
2. [P] : Id ─→ Info List+ ─→ ℙ
3. [R] : Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) ∈ EO+(Info) ─→ ℙ
5. u : (Id × Info) List@i
6. v : (Id × Info) List List@i
7. (∀L1,L2∈v. L1 || L2)
⇒ (∀L∈v.squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
⇒ (∃G:(Id × Info) List
((∀L':(Id × Info) List. ((∀L∈v.L || L')
⇒ G || L'))
∧ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
∧ (∀L∈v.∃f:E ─→ E. es-local-embedding(Info;global-eo(L);global-eo(G);f))))@i'
8. (∀L1,L2∈[u / v]. L1 || L2)@i'
9. (∀L∈[u / v].squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))@i
⊢ ∃G:(Id × Info) List
((∀L':(Id × Info) List. ((∀L∈[u / v].L || L')
⇒ G || L'))
∧ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
∧ (∀L∈[u / v].∃f:E ─→ E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))
Latex:
Latex:
.....assertion.....
1. [Info] : Type
2. [P] : Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}
3. [R] : Id {}\mrightarrow{} Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) \mmember{} EO+(Info) {}\mrightarrow{} \mBbbP{}
\mvdash{} \mforall{}LL:(Id \mtimes{} Info) List List
((\mforall{}L1,L2\mmember{}LL. L1 || L2)
{}\mRightarrow{} (\mforall{}L\mmember{}LL.squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
{}\mRightarrow{} (\mexists{}G:(Id \mtimes{} Info) List
((\mforall{}L':(Id \mtimes{} Info) List. ((\mforall{}L\mmember{}LL.L || L') {}\mRightarrow{} G || L'))
\mwedge{} (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
\mwedge{} (\mforall{}L\mmember{}LL.\mexists{}f:E {}\mrightarrow{} E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))))
By
Latex:
(InductionOnList THEN Auto)
Home
Index