Step
*
1
1
1
of Lemma
global-order-pairwise-compat-squash-invariant
1. [Info] : Type
2. [P] : Id ─→ Info List+ ─→ ℙ
3. [R] : Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) ∈ EO+(Info) ─→ ℙ
5. (∀L1,L2∈[]. L1 || L2)@i'
6. (∀L∈[].squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))@i
7. L' : (Id × Info) List@i
8. (∀L∈[].L || L')@i
⊢ [] || L'
BY
{ (D 0 THEN Reduce 0 THEN Auto THEN OrLeft THEN Auto) }
Latex:
Latex:
1. [Info] : Type
2. [P] : Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}
3. [R] : Id {}\mrightarrow{} Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}
4. squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) \mmember{} EO+(Info) {}\mrightarrow{} \mBbbP{}
5. (\mforall{}L1,L2\mmember{}[]. L1 || L2)@i'
6. (\mforall{}L\mmember{}[].squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))@i
7. L' : (Id \mtimes{} Info) List@i
8. (\mforall{}L\mmember{}[].L || L')@i
\mvdash{} [] || L'
By
Latex:
(D 0 THEN Reduce 0 THEN Auto THEN OrLeft THEN Auto)
Home
Index