Step
*
2
1
of Lemma
iseg-es-hist
1. [Info] : Type
2. es : EO+(Info)@i'
3. e1 : E@i
4. WellFnd{i}(E;x,y.(x <loc y))
5. j : E@i
6. L : Info List@i
7. loc(e1) = loc(j) ∈ Id
8. ¬(L = [] ∈ (Info List))
9. L ≤ es-hist(es;e1;j)@i
10. ¬↑first(j)
11. e1 ≤loc pred(j)
12. ∀L:Info List
(L ≤ es-hist(es;e1;pred(j))
⇒ ∃e∈[e1,pred(j)].L = es-hist(es;e1;e) ∈ (Info List)) supposing
((¬(L = [] ∈ (Info List))) and
(loc(e1) = loc(pred(j)) ∈ Id))
⊢ ∃e∈[e1,j].L = es-hist(es;e1;e) ∈ (Info List)
BY
{ Assert ⌈L ≤ es-hist(es;e1;pred(j)) ∨ (L = es-hist(es;e1;j) ∈ (Info List))⌉⋅ }
1
.....assertion.....
1. [Info] : Type
2. es : EO+(Info)@i'
3. e1 : E@i
4. WellFnd{i}(E;x,y.(x <loc y))
5. j : E@i
6. L : Info List@i
7. loc(e1) = loc(j) ∈ Id
8. ¬(L = [] ∈ (Info List))
9. L ≤ es-hist(es;e1;j)@i
10. ¬↑first(j)
11. e1 ≤loc pred(j)
12. ∀L:Info List
(L ≤ es-hist(es;e1;pred(j))
⇒ ∃e∈[e1,pred(j)].L = es-hist(es;e1;e) ∈ (Info List)) supposing
((¬(L = [] ∈ (Info List))) and
(loc(e1) = loc(pred(j)) ∈ Id))
⊢ L ≤ es-hist(es;e1;pred(j)) ∨ (L = es-hist(es;e1;j) ∈ (Info List))
2
1. [Info] : Type
2. es : EO+(Info)@i'
3. e1 : E@i
4. WellFnd{i}(E;x,y.(x <loc y))
5. j : E@i
6. L : Info List@i
7. loc(e1) = loc(j) ∈ Id
8. ¬(L = [] ∈ (Info List))
9. L ≤ es-hist(es;e1;j)@i
10. ¬↑first(j)
11. e1 ≤loc pred(j)
12. ∀L:Info List
(L ≤ es-hist(es;e1;pred(j))
⇒ ∃e∈[e1,pred(j)].L = es-hist(es;e1;e) ∈ (Info List)) supposing
((¬(L = [] ∈ (Info List))) and
(loc(e1) = loc(pred(j)) ∈ Id))
13. L ≤ es-hist(es;e1;pred(j)) ∨ (L = es-hist(es;e1;j) ∈ (Info List))
⊢ ∃e∈[e1,j].L = es-hist(es;e1;e) ∈ (Info List)
Latex:
1. [Info] : Type
2. es : EO+(Info)@i'
3. e1 : E@i
4. WellFnd\{i\}(E;x,y.(x <loc y))
5. j : E@i
6. L : Info List@i
7. loc(e1) = loc(j)
8. \mneg{}(L = [])
9. L \mleq{} es-hist(es;e1;j)@i
10. \mneg{}\muparrow{}first(j)
11. e1 \mleq{}loc pred(j)
12. \mforall{}L:Info List
(L \mleq{} es-hist(es;e1;pred(j)) {}\mRightarrow{} \mexists{}e\mmember{}[e1,pred(j)].L = es-hist(es;e1;e)) supposing
((\mneg{}(L = [])) and
(loc(e1) = loc(pred(j))))
\mvdash{} \mexists{}e\mmember{}[e1,j].L = es-hist(es;e1;e)
By
Assert \mkleeneopen{}L \mleq{} es-hist(es;e1;pred(j)) \mvee{} (L = es-hist(es;e1;j))\mkleeneclose{}\mcdot{}
Home
Index