Nuprl Lemma : iseg-es-hist
∀[Info:Type]
∀es:EO+(Info). ∀e1,e2:E. ∀L:Info List.
(L ≤ es-hist(es;e1;e2)
⇒ ∃e∈[e1,e2].L = es-hist(es;e1;e) ∈ (Info List)) supposing
((¬(L = [] ∈ (Info List))) and
(loc(e1) = loc(e2) ∈ Id))
Proof
Definitions occuring in Statement :
es-hist: es-hist(es;e1;e2)
,
event-ordering+: EO+(Info)
,
existse-between2: ∃e∈[e1,e2].P[e]
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
iseg: l1 ≤ l2
,
nil: []
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
decidable__es-le,
event-ordering+_subtype,
es-interval-is-nil,
decidable__es-locl,
es-le-not-locl,
map_nil_lemma,
iseg_nil,
assert_of_null,
es-le-iff,
es-pred_wf,
es-pred-locl,
es-hist-last,
es-locl_transitivity1,
iseg_wf,
iseg_append_single,
es-hist_wf,
es-info_wf,
equal_wf,
list_wf,
Id_wf,
es-pred-loc-base,
es-E_wf,
iff_weakening_equal,
es-le_weakening,
es-le_wf,
es-le-self,
and_wf,
es-interval-eq,
map_cons_lemma,
list_ind_nil_lemma,
nil_wf
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}e1,e2:E. \mforall{}L:Info List.
(L \mleq{} es-hist(es;e1;e2) {}\mRightarrow{} \mexists{}e\mmember{}[e1,e2].L = es-hist(es;e1;e)) supposing
((\mneg{}(L = [])) and
(loc(e1) = loc(e2)))
Date html generated:
2015_07_17-PM-00_11_07
Last ObjectModification:
2015_02_04-PM-05_37_29
Home
Index