Nuprl Lemma : iterate-process_wf
∀[M,E:Type ─→ Type].
  (∀P:process(P.M[P];P.E[P]). ∀inputs:M[process(P.M[P];P.E[P])] List.  (P*(inputs) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))
Proof
Definitions occuring in Statement : 
iterate-process: P*(inputs)
, 
process: process(P.M[P];P.E[P])
, 
list: T List
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
process-subtype, 
list_accum_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
subtype_top, 
list_wf, 
process_wf, 
strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}P:process(P.M[P];P.E[P]).  \mforall{}inputs:M[process(P.M[P];P.E[P])]  List.
          (P*(inputs)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))
Date html generated:
2015_07_17-AM-11_20_16
Last ObjectModification:
2015_01_28-AM-07_34_10
Home
Index