Nuprl Lemma : iterate-process_wf

[M,E:Type ─→ Type].
  (∀P:process(P.M[P];P.E[P]). ∀inputs:M[process(P.M[P];P.E[P])] List.  (P*(inputs) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))


Proof




Definitions occuring in Statement :  iterate-process: P*(inputs) process: process(P.M[P];P.E[P]) list: List strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  process-subtype list_accum_wf pi1_wf_top subtype_rel_product top_wf subtype_top list_wf process_wf strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}P:process(P.M[P];P.E[P]).  \mforall{}inputs:M[process(P.M[P];P.E[P])]  List.
          (P*(inputs)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))



Date html generated: 2015_07_17-AM-11_20_16
Last ObjectModification: 2015_01_28-AM-07_34_10

Home Index