Step
*
1
2
3
2
2
1
4
of Lemma
member-fpf-vals
1. A : Type
2. eq : EqDecider(A)@i
3. B : A ─→ Type
4. P : A ─→ 𝔹@i
5. d : A List@i
6. f1 : x:{x:A| (x ∈ d)}  ─→ B[x]@i
7. x : A@i
8. v : B[x]@i
9. u : A@i
10. v1 : A List@i
11. ∀g:x:{x:A| (x ∈ v1)}  ─→ B[x]
      ((<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇐⇒ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])})@i
12. g : x:{x:A| (x ∈ [u / v1])}  ─→ B[x]@i
13. (<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇒ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])}
14. (<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇐ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])}
15. (u ∈ [u / v1])
16. zip(filter(P;v1);map(g;filter(P;v1))) ∈ (x:A × B[x]) List
17. ↑(P u)
18. (↑((eq u x) ∨bx ∈b v1))) c∧ (↑(P x))
⊢ x ∈ {x:A| (x ∈ [u / v1])} 
BY
{ (MemTypeCD THEN Auto) }
1
.....set predicate..... 
1. A : Type
2. eq : EqDecider(A)@i
3. B : A ─→ Type
4. P : A ─→ 𝔹@i
5. d : A List@i
6. f1 : x:{x:A| (x ∈ d)}  ─→ B[x]@i
7. x : A@i
8. v : B[x]@i
9. u : A@i
10. v1 : A List@i
11. ∀g:x:{x:A| (x ∈ v1)}  ─→ B[x]
      ((<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇐⇒ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])})@i
12. g : x:{x:A| (x ∈ [u / v1])}  ─→ B[x]@i
13. (<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇒ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])}
14. (<x, v> ∈ zip(filter(P;v1);map(g;filter(P;v1)))) 
⇐ {((↑x ∈b v1)) ∧ (↑(P x))) ∧ (v = (g x) ∈ B[x])}
15. (u ∈ [u / v1])
16. zip(filter(P;v1);map(g;filter(P;v1))) ∈ (x:A × B[x]) List
17. ↑(P u)
18. (↑((eq u x) ∨bx ∈b v1))) c∧ (↑(P x))
⊢ (x ∈ [u / v1])
Latex:
1.  A  :  Type
2.  eq  :  EqDecider(A)@i
3.  B  :  A  {}\mrightarrow{}  Type
4.  P  :  A  {}\mrightarrow{}  \mBbbB{}@i
5.  d  :  A  List@i
6.  f1  :  x:\{x:A|  (x  \mmember{}  d)\}    {}\mrightarrow{}  B[x]@i
7.  x  :  A@i
8.  v  :  B[x]@i
9.  u  :  A@i
10.  v1  :  A  List@i
11.  \mforall{}g:x:\{x:A|  (x  \mmember{}  v1)\}    {}\mrightarrow{}  B[x]
            ((<x,  v>  \mmember{}  zip(filter(P;v1);map(g;filter(P;v1))))
            \mLeftarrow{}{}\mRightarrow{}  \{((\muparrow{}x  \mmember{}\msubb{}  v1))  \mwedge{}  (\muparrow{}(P  x)))  \mwedge{}  (v  =  (g  x))\})@i
12.  g  :  x:\{x:A|  (x  \mmember{}  [u  /  v1])\}    {}\mrightarrow{}  B[x]@i
13.  (<x,  v>  \mmember{}  zip(filter(P;v1);map(g;filter(P;v1))))  {}\mRightarrow{}  \{((\muparrow{}x  \mmember{}\msubb{}  v1))  \mwedge{}  (\muparrow{}(P  x)))  \mwedge{}  (v  =  (g  x))\}
14.  (<x,  v>  \mmember{}  zip(filter(P;v1);map(g;filter(P;v1))))  \mLeftarrow{}{}  \{((\muparrow{}x  \mmember{}\msubb{}  v1))  \mwedge{}  (\muparrow{}(P  x)))  \mwedge{}  (v  =  (g  x))\}
15.  (u  \mmember{}  [u  /  v1])
16.  zip(filter(P;v1);map(g;filter(P;v1)))  \mmember{}  (x:A  \mtimes{}  B[x])  List
17.  \muparrow{}(P  u)
18.  (\muparrow{}((eq  u  x)  \mvee{}\msubb{}x  \mmember{}\msubb{}  v1)))  c\mwedge{}  (\muparrow{}(P  x))
\mvdash{}  x  \mmember{}  \{x:A|  (x  \mmember{}  [u  /  v1])\} 
By
(MemTypeCD  THEN  Auto)
Home
Index