Nuprl Lemma : member-fpf-vals

[A:Type]
  ∀eq:EqDecider(A)
    ∀[B:A ─→ Type]
      ∀P:A ─→ 𝔹. ∀f:x:A fp-> B[x]. ∀x:A. ∀v:B[x].
        ((<x, v> ∈ fpf-vals(eq;P;f)) ⇐⇒ {((↑x ∈ dom(f)) ∧ (↑(P x))) ∧ (v f(x) ∈ B[x])})


Proof




Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_member: (x ∈ l) assert: b bool: 𝔹 uall: [x:A]. B[x] guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Lemmas :  l_member_wf member-remove-repeats list_induction filter_nil_lemma deq_member_nil_lemma zip_nil_lemma filter_cons_lemma deq_member_cons_lemma all_wf iff_wf assert_wf deq-member_wf list_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases nil_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base bool_wf eqtt_to_assert map_cons_lemma zip_cons_cons_lemma cons_wf cons_member subtype_rel_dep_function subtype_rel_sets equal_wf subtype_rel_self set_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot assert-deq-member null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse assert_witness list-subtype subtype_rel_list_set bnot_wf not_wf uiff_transitivity assert_of_bnot subtype_rel_list subtype_rel_product bor_wf iff_transitivity eqof_wf or_wf iff_weakening_uiff assert_of_bor safe-assert-deq assert_elim and_wf subtype_rel_wf not_assert_elim true_wf
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:x:A  fp->  B[x].  \mforall{}x:A.  \mforall{}v:B[x].
                ((<x,  v>  \mmember{}  fpf-vals(eq;P;f))  \mLeftarrow{}{}\mRightarrow{}  \{((\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x)))  \mwedge{}  (v  =  f(x))\})



Date html generated: 2015_07_17-AM-11_09_27
Last ObjectModification: 2015_01_28-AM-07_54_18

Home Index