Nuprl Lemma : zip_cons_cons_lemma

d,c,b,a:Top.  (zip([a b];[c d]) [<a, c> zip(b;d)])


Proof




Definitions occuring in Statement :  zip: zip(as;bs) cons: [a b] top: Top all: x:A. B[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T zip: zip(as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}d,c,b,a:Top.    (zip([a  /  b];[c  /  d])  \msim{}  [<a,  c>  /  zip(b;d)])



Date html generated: 2016_05_14-PM-03_14_42
Last ObjectModification: 2015_12_26-PM-01_45_46

Theory : list_1


Home Index