Nuprl Lemma : zip_cons_cons_lemma
∀d,c,b,a:Top.  (zip([a / b];[c / d]) ~ [<a, c> / zip(b;d)])
Proof
Definitions occuring in Statement : 
zip: zip(as;bs)
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
zip: zip(as;bs)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}d,c,b,a:Top.    (zip([a  /  b];[c  /  d])  \msim{}  [<a,  c>  /  zip(b;d)])
Date html generated:
2016_05_14-PM-03_14_42
Last ObjectModification:
2015_12_26-PM-01_45_46
Theory : list_1
Home
Index