Nuprl Lemma : zip_nil_lemma

x:Top. (zip([];x) [])


Proof




Definitions occuring in Statement :  zip: zip(as;bs) nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] zip: zip(as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}x:Top.  (zip([];x)  \msim{}  [])



Date html generated: 2016_05_14-PM-03_14_20
Last ObjectModification: 2015_12_26-PM-01_46_07

Theory : list_1


Home Index