Step
*
of Lemma
simple-loc-comb-classrel
∀[Info,B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[Xs:k:ℕn ─→ EClass(A k)]. ∀[f:Id ─→ (k:ℕn ─→ (A k)) ─→ B]. ∀[F:Id
                                                                                                         ─→ (k:ℕn
                                                                                                            ─→ bag(A k))
                                                                                                         ─→ bag(B)].
  ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
    uiff(v ∈ F|Loc; Xs|(e);↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs[k] ∈ Xs[k](e)) ∧ (v = (f loc(e) vs) ∈ B))) 
  supposing ∀x:Id. ∀v:B. ∀bs:k:ℕn ─→ bag(A k).
              (v ↓∈ F x bs 
⇐⇒ ↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs k ↓∈ bs k) ∧ (v = (f x vs) ∈ B)))
BY
{ (Auto THEN Try ((Unhide THEN Auto))) }
1
1. Info : Type
2. B : Type
3. n : ℕ
4. A : ℕn ─→ Type
5. Xs : k:ℕn ─→ EClass(A k)
6. f : Id ─→ (k:ℕn ─→ (A k)) ─→ B
7. F : Id ─→ (k:ℕn ─→ bag(A k)) ─→ bag(B)
8. ∀x:Id. ∀v:B. ∀bs:k:ℕn ─→ bag(A k).
     (v ↓∈ F x bs 
⇐⇒ ↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs k ↓∈ bs k) ∧ (v = (f x vs) ∈ B)))
9. es : EO+(Info)
10. e : E
11. v : B
12. v ∈ F|Loc; Xs|(e)
⊢ ↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs[k] ∈ Xs[k](e)) ∧ (v = (f loc(e) vs) ∈ B))
2
1. Info : Type
2. B : Type
3. n : ℕ
4. A : ℕn ─→ Type
5. Xs : k:ℕn ─→ EClass(A k)
6. f : Id ─→ (k:ℕn ─→ (A k)) ─→ B
7. F : Id ─→ (k:ℕn ─→ bag(A k)) ─→ bag(B)
8. ∀x:Id. ∀v:B. ∀bs:k:ℕn ─→ bag(A k).
     (v ↓∈ F x bs 
⇐⇒ ↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs k ↓∈ bs k) ∧ (v = (f x vs) ∈ B)))
9. es : EO+(Info)
10. e : E
11. v : B
12. ↓∃vs:k:ℕn ─→ (A k). ((∀k:ℕn. vs[k] ∈ Xs[k](e)) ∧ (v = (f loc(e) vs) ∈ B))
⊢ v ∈ F|Loc; Xs|(e)
Latex:
\mforall{}[Info,B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  (k:\mBbbN{}n  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  B].
\mforall{}[F:Id  {}\mrightarrow{}  (k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k))  {}\mrightarrow{}  bag(B)].
    \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:B].
        uiff(v  \mmember{}  F|Loc;  Xs|(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}k:\mBbbN{}n.  vs[k]  \mmember{}  Xs[k](e))  \mwedge{}  (v  =  (f  loc(e)  vs)))) 
    supposing  \mforall{}x:Id.  \mforall{}v:B.  \mforall{}bs:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k).
                            (v  \mdownarrow{}\mmember{}  F  x  bs  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}vs:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}k:\mBbbN{}n.  vs  k  \mdownarrow{}\mmember{}  bs  k)  \mwedge{}  (v  =  (f  x  vs))))
By
(Auto  THEN  Try  ((Unhide  THEN  Auto)))
Home
Index