Step
*
1
1
1
2
2
of Lemma
es-pred-loc-base
1. es : EO@i'
2. ∀[e,e':es-base-E(es)]. ((e < e') ∈ ℙ)
3. es-eq(es) ∈ EqDecider(es-base-E(es))
4. e : es-base-E(es)@i
5. ¬↑(es-eq(es) pred1(e) e)
6. ¬↑(es-dom(es) pred1(e))
7. ∀e1:es-base-E(es). ((e1 < e)
⇒ (loc(pred(e1)) = loc(e1) ∈ Id))
⊢ loc(pred(pred1(e))) = loc(e) ∈ Id
BY
{ (InstHyp [⌈pred1(e)⌉] (-1)⋅ THENA Auto) }
1
.....antecedent.....
1. es : EO@i'
2. ∀[e,e':es-base-E(es)]. ((e < e') ∈ ℙ)
3. es-eq(es) ∈ EqDecider(es-base-E(es))
4. e : es-base-E(es)@i
5. ¬↑(es-eq(es) pred1(e) e)
6. ¬↑(es-dom(es) pred1(e))
7. ∀e1:es-base-E(es). ((e1 < e)
⇒ (loc(pred(e1)) = loc(e1) ∈ Id))
⊢ (pred1(e) < e)
2
1. es : EO@i'
2. ∀[e,e':es-base-E(es)]. ((e < e') ∈ ℙ)
3. es-eq(es) ∈ EqDecider(es-base-E(es))
4. e : es-base-E(es)@i
5. ¬↑(es-eq(es) pred1(e) e)
6. ¬↑(es-dom(es) pred1(e))
7. ∀e1:es-base-E(es). ((e1 < e)
⇒ (loc(pred(e1)) = loc(e1) ∈ Id))
8. loc(pred(pred1(e))) = loc(pred1(e)) ∈ Id
⊢ loc(pred(pred1(e))) = loc(e) ∈ Id
Latex:
1. es : EO@i'
2. \mforall{}[e,e':es-base-E(es)]. ((e < e') \mmember{} \mBbbP{})
3. es-eq(es) \mmember{} EqDecider(es-base-E(es))
4. e : es-base-E(es)@i
5. \mneg{}\muparrow{}(es-eq(es) pred1(e) e)
6. \mneg{}\muparrow{}(es-dom(es) pred1(e))
7. \mforall{}e1:es-base-E(es). ((e1 < e) {}\mRightarrow{} (loc(pred(e1)) = loc(e1)))
\mvdash{} loc(pred(pred1(e))) = loc(e)
By
(InstHyp [\mkleeneopen{}pred1(e)\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
Home
Index