Nuprl Lemma : implies-es-pred
∀[the_es:EO]. ∀[e,e':E]. e = pred(e') ∈ E supposing (e <loc e') ∧ (∀e1:E. (¬((e <loc e1) ∧ (e1 <loc e'))))
Proof
Definitions occuring in Statement :
es-locl: (e <loc e')
,
es-pred: pred(e)
,
es-E: E
,
event_ordering: EO
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
equal: s = t ∈ T
Lemmas :
assert_wf,
es-first_wf2,
es-locl_wf,
es-pred_wf,
Id_wf,
es-loc_wf,
es-loc-pred,
iff_weakening_equal,
or_wf,
equal_wf,
es-E_wf
\mforall{}[the$_{es}$:EO]. \mforall{}[e,e':E].
e = pred(e') supposing (e <loc e') \mwedge{} (\mforall{}e1:E. (\mneg{}((e <loc e1) \mwedge{} (e1 <loc e'))))
Date html generated:
2015_07_17-AM-08_39_07
Last ObjectModification:
2015_02_04-AM-07_07_45
Home
Index