Step
*
of Lemma
implies-es-pred
∀[the_es:EO]. ∀[e,e':E].  e = pred(e') ∈ E supposing (e <loc e') ∧ (∀e1:E. (¬((e <loc e1) ∧ (e1 <loc e'))))
BY
{ (Use_ES_Axioms THEN Unfold `and` 0 THEN Fold `cand` 0 THEN Auto THEN ExRepD THEN Assert ¬↑first(e')⋅) }
1
.....assertion..... 
1. the_es : EO
2. Trans(E;e,e'.(e <loc e'))
3. SWellFounded((e <loc e'))
4. ∀e,e':E.  (loc(e) = loc(e') ∈ Id 
⇐⇒ (e <loc e') ∨ (e = e' ∈ E) ∨ (e' <loc e))
5. ∀e:E. (↑first(e) 
⇐⇒ ∀e':E. (¬(e' <loc e)))
6. ∀e:E. (pred(e) <loc e) ∧ (∀e':E. (¬((pred(e) <loc e') ∧ (e' <loc e)))) supposing ¬↑first(e)
7. Trans(E;e,e'.(e < e'))
8. SWellFounded((e < e'))
9. ∀e,e':E.  ((e <loc e') 
⇒ (e < e'))
10. e : E
11. e' : E
12. (e <loc e')
13. ∀e1:E. (¬((e <loc e1) c∧ (e1 <loc e')))
⊢ ¬↑first(e')
2
1. the_es : EO
2. Trans(E;e,e'.(e <loc e'))
3. SWellFounded((e <loc e'))
4. ∀e,e':E.  (loc(e) = loc(e') ∈ Id 
⇐⇒ (e <loc e') ∨ (e = e' ∈ E) ∨ (e' <loc e))
5. ∀e:E. (↑first(e) 
⇐⇒ ∀e':E. (¬(e' <loc e)))
6. ∀e:E. (pred(e) <loc e) ∧ (∀e':E. (¬((pred(e) <loc e') ∧ (e' <loc e)))) supposing ¬↑first(e)
7. Trans(E;e,e'.(e < e'))
8. SWellFounded((e < e'))
9. ∀e,e':E.  ((e <loc e') 
⇒ (e < e'))
10. e : E
11. e' : E
12. (e <loc e')
13. ∀e1:E. (¬((e <loc e1) c∧ (e1 <loc e')))
14. ¬↑first(e')
⊢ e = pred(e') ∈ E
Latex:
\mforall{}[the$_{es}$:EO].  \mforall{}[e,e':E].
    e  =  pred(e')  supposing  (e  <loc  e')  \mwedge{}  (\mforall{}e1:E.  (\mneg{}((e  <loc  e1)  \mwedge{}  (e1  <loc  e'))))
By
(Use\_ES\_Axioms
  THEN  Unfold  `and`  0
  THEN  Fold  `cand`  0
  THEN  Auto
  THEN  ExRepD
  THEN  Assert  \mneg{}\muparrow{}first(e')\mcdot{})
Home
Index