Nuprl Lemma : dataflow-to-Process_functionality

[A,B:Type]. ∀[F1,F2:dataflow(A;B)]. ∀[g:B ─→ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
  dataflow-to-Process(F1;g)≡dataflow-to-Process(F2;g) supposing F1 ≡ F2


Proof




Definitions occuring in Statement :  dataflow-to-Process: dataflow-to-Process process-equiv: process-equiv Process: Process(P.M[P]) Com: Com(P.M[P]) dataflow-equiv: d1 ≡ d2 dataflow: dataflow(A;B) ldag: LabeledDAG(T) Id: Id uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  list_wf pMsg_wf dataflow-equiv_wf ldag_wf Id_wf Com_wf Process_wf dataflow_wf datastream-dataflow-to-Process map_wf squash_wf true_wf pExt_wf

Latex:
\mforall{}[A,B:Type].  \mforall{}[F1,F2:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    dataflow-to-Process(F1;g)\mequiv{}dataflow-to-Process(F2;g)  supposing  F1  \mequiv{}  F2



Date html generated: 2015_07_23-AM-11_07_42
Last ObjectModification: 2015_01_29-AM-00_09_52

Home Index