Nuprl Lemma : dataflow-to-Process_functionality
∀[A,B:Type]. ∀[F1,F2:dataflow(A;B)]. ∀[g:B ─→ LabeledDAG(Id × (Com(P.A) Process(P.A)))].
  dataflow-to-Process(F1;g)≡dataflow-to-Process(F2;g) supposing F1 ≡ F2
Proof
Definitions occuring in Statement : 
dataflow-to-Process: dataflow-to-Process, 
process-equiv: process-equiv, 
Process: Process(P.M[P])
, 
Com: Com(P.M[P])
, 
dataflow-equiv: d1 ≡ d2
, 
dataflow: dataflow(A;B)
, 
ldag: LabeledDAG(T)
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
list_wf, 
pMsg_wf, 
dataflow-equiv_wf, 
ldag_wf, 
Id_wf, 
Com_wf, 
Process_wf, 
dataflow_wf, 
datastream-dataflow-to-Process, 
map_wf, 
squash_wf, 
true_wf, 
pExt_wf
Latex:
\mforall{}[A,B:Type].  \mforall{}[F1,F2:dataflow(A;B)].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].
    dataflow-to-Process(F1;g)\mequiv{}dataflow-to-Process(F2;g)  supposing  F1  \mequiv{}  F2
Date html generated:
2015_07_23-AM-11_07_42
Last ObjectModification:
2015_01_29-AM-00_09_52
Home
Index