Nuprl Lemma : datastream-dataflow-to-Process

[A,B:Type]. ∀[g:B ─→ LabeledDAG(Id × (Com(P.A) Process(P.A)))]. ∀[L:A List]. ∀[F:dataflow(A;B)].
  (data-stream(dataflow-to-Process(
               F;
               g);L) map(g;data-stream(F;L)))


Proof




Definitions occuring in Statement :  dataflow-to-Process: dataflow-to-Process Process: Process(P.M[P]) Com: Com(P.M[P]) data-stream: data-stream(P;L) dataflow: dataflow(A;B) ldag: LabeledDAG(T) Id: Id map: map(f;as) list: List uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] product: x:A × B[x] universe: Type sqequal: t
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf dataflow_wf equal-wf-T-base colength_wf_list list-cases data_stream_nil_lemma map_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_wf ldag_wf Id_wf Com_wf Process_wf subtype_rel_list top_wf rec_dataflow_ap_lemma map_cons_lemma dataflow-ap_wf data-stream-cons

Latex:
\mforall{}[A,B:Type].  \mforall{}[g:B  {}\mrightarrow{}  LabeledDAG(Id  \mtimes{}  (Com(P.A)  Process(P.A)))].  \mforall{}[L:A  List].  \mforall{}[F:dataflow(A;B)].
    (data-stream(dataflow-to-Process(
                              F;
                              g);L)  \msim{}  map(g;data-stream(F;L)))



Date html generated: 2015_07_23-AM-11_07_39
Last ObjectModification: 2015_01_29-AM-00_10_10

Home Index