Nuprl Lemma : data-stream-cons

[L:Top List]. ∀[a,P:Top].  (data-stream(P;[a L]) [snd(P(a)) data-stream(fst(P(a));L)])


Proof




Definitions occuring in Statement :  data-stream: data-stream(P;L) dataflow-ap: df(a) cons: [a b] list: List uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) sqequal: t
Lemmas :  top_wf list_wf upto_decomp2 length_wf cons_wf non_neg_length length_wf_nat length_cons less_than_wf length_of_cons_lemma trivial-int-eq1 map_cons_lemma first0 iter_df_nil_lemma map-map upto_wf int_seg_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf equal-wf-T-base colength_wf_list list-cases map_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base select-cons le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot list_ind_cons_lemma lt_int_wf assert_of_lt_int iter_df_cons_lemma

Latex:
\mforall{}[L:Top  List].  \mforall{}[a,P:Top].    (data-stream(P;[a  /  L])  \msim{}  [snd(P(a))  /  data-stream(fst(P(a));L)])



Date html generated: 2015_07_23-AM-11_06_02
Last ObjectModification: 2015_01_29-AM-00_11_46

Home Index