Nuprl Lemma : data-stream-cons
∀[L:Top List]. ∀[a,P:Top].  (data-stream(P;[a / L]) ~ [snd(P(a)) / data-stream(fst(P(a));L)])
Proof
Definitions occuring in Statement : 
data-stream: data-stream(P;L)
, 
dataflow-ap: df(a)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
sqequal: s ~ t
Lemmas : 
top_wf, 
list_wf, 
upto_decomp2, 
length_wf, 
cons_wf, 
non_neg_length, 
length_wf_nat, 
length_cons, 
less_than_wf, 
length_of_cons_lemma, 
trivial-int-eq1, 
map_cons_lemma, 
first0, 
iter_df_nil_lemma, 
map-map, 
upto_wf, 
int_seg_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
map_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
select-cons, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
list_ind_cons_lemma, 
lt_int_wf, 
assert_of_lt_int, 
iter_df_cons_lemma
Latex:
\mforall{}[L:Top  List].  \mforall{}[a,P:Top].    (data-stream(P;[a  /  L])  \msim{}  [snd(P(a))  /  data-stream(fst(P(a));L)])
Date html generated:
2015_07_23-AM-11_06_02
Last ObjectModification:
2015_01_29-AM-00_11_46
Home
Index